1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
/* SAT, Satisfiability Problem */
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
param m, integer, > 0;
/* number of clauses */
param n, integer, > 0;
/* number of variables */
set C{1..m};
/* clauses; each clause C[i], i = 1, ..., m, is disjunction of some
variables or their negations; in the data section each clause is
coded as a set of indices of corresponding variables, where negative
indices mean negation; for example, the clause (x3 or not x7 or x11)
is coded as the set { 3, -7, 11 } */
var x{1..n}, binary;
/* main variables */
/* To solve the satisfiability problem means to determine all variables
x[j] such that conjunction of all clauses C[1] and ... and C[m] takes
on the value true, i.e. all clauses are satisfied.
Let the clause C[i] be (t or t' or ... or t''), where t, t', ..., t''
are either variables or their negations. The condition of satisfying
C[i] can be most naturally written as:
t + t' + ... + t'' >= 1, (1)
where t, t', t'' have to be replaced by either x[j] or (1 - x[j]).
The formulation (1) leads to the mip problem with no objective, i.e.
to a feasibility problem.
Another, more practical way is to write the condition for C[i] as:
t + t' + ... + t'' + y[i] >= 1, (2)
where y[i] is an auxiliary binary variable, and minimize the sum of
y[i]. If the sum is zero, all y[i] are also zero, and therefore all
clauses are satisfied. If the sum is minimal but non-zero, its value
shows the number of clauses which cannot be satisfied. */
var y{1..m}, binary, >= 0;
/* auxiliary variables */
s.t. c{i in 1..m}:
sum{j in C[i]} (if j > 0 then x[j] else (1 - x[-j])) + y[i] >= 1;
/* the condition (2) */
minimize unsat: sum{i in 1..m} y[i];
/* number of unsatisfied clauses */
data;
/* These data correspond to the instance hole6 (pigeon hole problem for
6 holes) from SATLIB, the Satisfiability Library, which is part of
the collection at the Forschungsinstitut fuer anwendungsorientierte
Wissensverarbeitung in Ulm Germany */
/* The optimal solution is 1 (one clause cannot be satisfied) */
param m := 133;
param n := 42;
set C[1] := -1 -7;
set C[2] := -1 -13;
set C[3] := -1 -19;
set C[4] := -1 -25;
set C[5] := -1 -31;
set C[6] := -1 -37;
set C[7] := -7 -13;
set C[8] := -7 -19;
set C[9] := -7 -25;
set C[10] := -7 -31;
set C[11] := -7 -37;
set C[12] := -13 -19;
set C[13] := -13 -25;
set C[14] := -13 -31;
set C[15] := -13 -37;
set C[16] := -19 -25;
set C[17] := -19 -31;
set C[18] := -19 -37;
set C[19] := -25 -31;
set C[20] := -25 -37;
set C[21] := -31 -37;
set C[22] := -2 -8;
set C[23] := -2 -14;
set C[24] := -2 -20;
set C[25] := -2 -26;
set C[26] := -2 -32;
set C[27] := -2 -38;
set C[28] := -8 -14;
set C[29] := -8 -20;
set C[30] := -8 -26;
set C[31] := -8 -32;
set C[32] := -8 -38;
set C[33] := -14 -20;
set C[34] := -14 -26;
set C[35] := -14 -32;
set C[36] := -14 -38;
set C[37] := -20 -26;
set C[38] := -20 -32;
set C[39] := -20 -38;
set C[40] := -26 -32;
set C[41] := -26 -38;
set C[42] := -32 -38;
set C[43] := -3 -9;
set C[44] := -3 -15;
set C[45] := -3 -21;
set C[46] := -3 -27;
set C[47] := -3 -33;
set C[48] := -3 -39;
set C[49] := -9 -15;
set C[50] := -9 -21;
set C[51] := -9 -27;
set C[52] := -9 -33;
set C[53] := -9 -39;
set C[54] := -15 -21;
set C[55] := -15 -27;
set C[56] := -15 -33;
set C[57] := -15 -39;
set C[58] := -21 -27;
set C[59] := -21 -33;
set C[60] := -21 -39;
set C[61] := -27 -33;
set C[62] := -27 -39;
set C[63] := -33 -39;
set C[64] := -4 -10;
set C[65] := -4 -16;
set C[66] := -4 -22;
set C[67] := -4 -28;
set C[68] := -4 -34;
set C[69] := -4 -40;
set C[70] := -10 -16;
set C[71] := -10 -22;
set C[72] := -10 -28;
set C[73] := -10 -34;
set C[74] := -10 -40;
set C[75] := -16 -22;
set C[76] := -16 -28;
set C[77] := -16 -34;
set C[78] := -16 -40;
set C[79] := -22 -28;
set C[80] := -22 -34;
set C[81] := -22 -40;
set C[82] := -28 -34;
set C[83] := -28 -40;
set C[84] := -34 -40;
set C[85] := -5 -11;
set C[86] := -5 -17;
set C[87] := -5 -23;
set C[88] := -5 -29;
set C[89] := -5 -35;
set C[90] := -5 -41;
set C[91] := -11 -17;
set C[92] := -11 -23;
set C[93] := -11 -29;
set C[94] := -11 -35;
set C[95] := -11 -41;
set C[96] := -17 -23;
set C[97] := -17 -29;
set C[98] := -17 -35;
set C[99] := -17 -41;
set C[100] := -23 -29;
set C[101] := -23 -35;
set C[102] := -23 -41;
set C[103] := -29 -35;
set C[104] := -29 -41;
set C[105] := -35 -41;
set C[106] := -6 -12;
set C[107] := -6 -18;
set C[108] := -6 -24;
set C[109] := -6 -30;
set C[110] := -6 -36;
set C[111] := -6 -42;
set C[112] := -12 -18;
set C[113] := -12 -24;
set C[114] := -12 -30;
set C[115] := -12 -36;
set C[116] := -12 -42;
set C[117] := -18 -24;
set C[118] := -18 -30;
set C[119] := -18 -36;
set C[120] := -18 -42;
set C[121] := -24 -30;
set C[122] := -24 -36;
set C[123] := -24 -42;
set C[124] := -30 -36;
set C[125] := -30 -42;
set C[126] := -36 -42;
set C[127] := 6 5 4 3 2 1;
set C[128] := 12 11 10 9 8 7;
set C[129] := 18 17 16 15 14 13;
set C[130] := 24 23 22 21 20 19;
set C[131] := 30 29 28 27 26 25;
set C[132] := 36 35 34 33 32 31;
set C[133] := 42 41 40 39 38 37;
end;
|