summaryrefslogtreecommitdiff
path: root/glpk-5.0/examples/sat.mod
diff options
context:
space:
mode:
authorPasha <pasha@member.fsf.org>2023-01-27 00:54:07 +0000
committerPasha <pasha@member.fsf.org>2023-01-27 00:54:07 +0000
commitef800d4ffafdbde7d7a172ad73bd984b1695c138 (patch)
tree920cc189130f1e98f252283fce94851443641a6d /glpk-5.0/examples/sat.mod
parentec4ae3c2b5cb0e83fb667f14f832ea94f68ef075 (diff)
downloadoneapi-ef800d4ffafdbde7d7a172ad73bd984b1695c138.tar.gz
oneapi-ef800d4ffafdbde7d7a172ad73bd984b1695c138.tar.bz2
simplex-glpk with modified glpk for fpgaHEADmaster
Diffstat (limited to 'glpk-5.0/examples/sat.mod')
-rw-r--r--glpk-5.0/examples/sat.mod201
1 files changed, 201 insertions, 0 deletions
diff --git a/glpk-5.0/examples/sat.mod b/glpk-5.0/examples/sat.mod
new file mode 100644
index 0000000..84ba952
--- /dev/null
+++ b/glpk-5.0/examples/sat.mod
@@ -0,0 +1,201 @@
+/* SAT, Satisfiability Problem */
+
+/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
+
+param m, integer, > 0;
+/* number of clauses */
+
+param n, integer, > 0;
+/* number of variables */
+
+set C{1..m};
+/* clauses; each clause C[i], i = 1, ..., m, is disjunction of some
+ variables or their negations; in the data section each clause is
+ coded as a set of indices of corresponding variables, where negative
+ indices mean negation; for example, the clause (x3 or not x7 or x11)
+ is coded as the set { 3, -7, 11 } */
+
+var x{1..n}, binary;
+/* main variables */
+
+/* To solve the satisfiability problem means to determine all variables
+ x[j] such that conjunction of all clauses C[1] and ... and C[m] takes
+ on the value true, i.e. all clauses are satisfied.
+
+ Let the clause C[i] be (t or t' or ... or t''), where t, t', ..., t''
+ are either variables or their negations. The condition of satisfying
+ C[i] can be most naturally written as:
+
+ t + t' + ... + t'' >= 1, (1)
+
+ where t, t', t'' have to be replaced by either x[j] or (1 - x[j]).
+ The formulation (1) leads to the mip problem with no objective, i.e.
+ to a feasibility problem.
+
+ Another, more practical way is to write the condition for C[i] as:
+
+ t + t' + ... + t'' + y[i] >= 1, (2)
+
+ where y[i] is an auxiliary binary variable, and minimize the sum of
+ y[i]. If the sum is zero, all y[i] are also zero, and therefore all
+ clauses are satisfied. If the sum is minimal but non-zero, its value
+ shows the number of clauses which cannot be satisfied. */
+
+var y{1..m}, binary, >= 0;
+/* auxiliary variables */
+
+s.t. c{i in 1..m}:
+ sum{j in C[i]} (if j > 0 then x[j] else (1 - x[-j])) + y[i] >= 1;
+/* the condition (2) */
+
+minimize unsat: sum{i in 1..m} y[i];
+/* number of unsatisfied clauses */
+
+data;
+
+/* These data correspond to the instance hole6 (pigeon hole problem for
+ 6 holes) from SATLIB, the Satisfiability Library, which is part of
+ the collection at the Forschungsinstitut fuer anwendungsorientierte
+ Wissensverarbeitung in Ulm Germany */
+
+/* The optimal solution is 1 (one clause cannot be satisfied) */
+
+param m := 133;
+
+param n := 42;
+
+set C[1] := -1 -7;
+set C[2] := -1 -13;
+set C[3] := -1 -19;
+set C[4] := -1 -25;
+set C[5] := -1 -31;
+set C[6] := -1 -37;
+set C[7] := -7 -13;
+set C[8] := -7 -19;
+set C[9] := -7 -25;
+set C[10] := -7 -31;
+set C[11] := -7 -37;
+set C[12] := -13 -19;
+set C[13] := -13 -25;
+set C[14] := -13 -31;
+set C[15] := -13 -37;
+set C[16] := -19 -25;
+set C[17] := -19 -31;
+set C[18] := -19 -37;
+set C[19] := -25 -31;
+set C[20] := -25 -37;
+set C[21] := -31 -37;
+set C[22] := -2 -8;
+set C[23] := -2 -14;
+set C[24] := -2 -20;
+set C[25] := -2 -26;
+set C[26] := -2 -32;
+set C[27] := -2 -38;
+set C[28] := -8 -14;
+set C[29] := -8 -20;
+set C[30] := -8 -26;
+set C[31] := -8 -32;
+set C[32] := -8 -38;
+set C[33] := -14 -20;
+set C[34] := -14 -26;
+set C[35] := -14 -32;
+set C[36] := -14 -38;
+set C[37] := -20 -26;
+set C[38] := -20 -32;
+set C[39] := -20 -38;
+set C[40] := -26 -32;
+set C[41] := -26 -38;
+set C[42] := -32 -38;
+set C[43] := -3 -9;
+set C[44] := -3 -15;
+set C[45] := -3 -21;
+set C[46] := -3 -27;
+set C[47] := -3 -33;
+set C[48] := -3 -39;
+set C[49] := -9 -15;
+set C[50] := -9 -21;
+set C[51] := -9 -27;
+set C[52] := -9 -33;
+set C[53] := -9 -39;
+set C[54] := -15 -21;
+set C[55] := -15 -27;
+set C[56] := -15 -33;
+set C[57] := -15 -39;
+set C[58] := -21 -27;
+set C[59] := -21 -33;
+set C[60] := -21 -39;
+set C[61] := -27 -33;
+set C[62] := -27 -39;
+set C[63] := -33 -39;
+set C[64] := -4 -10;
+set C[65] := -4 -16;
+set C[66] := -4 -22;
+set C[67] := -4 -28;
+set C[68] := -4 -34;
+set C[69] := -4 -40;
+set C[70] := -10 -16;
+set C[71] := -10 -22;
+set C[72] := -10 -28;
+set C[73] := -10 -34;
+set C[74] := -10 -40;
+set C[75] := -16 -22;
+set C[76] := -16 -28;
+set C[77] := -16 -34;
+set C[78] := -16 -40;
+set C[79] := -22 -28;
+set C[80] := -22 -34;
+set C[81] := -22 -40;
+set C[82] := -28 -34;
+set C[83] := -28 -40;
+set C[84] := -34 -40;
+set C[85] := -5 -11;
+set C[86] := -5 -17;
+set C[87] := -5 -23;
+set C[88] := -5 -29;
+set C[89] := -5 -35;
+set C[90] := -5 -41;
+set C[91] := -11 -17;
+set C[92] := -11 -23;
+set C[93] := -11 -29;
+set C[94] := -11 -35;
+set C[95] := -11 -41;
+set C[96] := -17 -23;
+set C[97] := -17 -29;
+set C[98] := -17 -35;
+set C[99] := -17 -41;
+set C[100] := -23 -29;
+set C[101] := -23 -35;
+set C[102] := -23 -41;
+set C[103] := -29 -35;
+set C[104] := -29 -41;
+set C[105] := -35 -41;
+set C[106] := -6 -12;
+set C[107] := -6 -18;
+set C[108] := -6 -24;
+set C[109] := -6 -30;
+set C[110] := -6 -36;
+set C[111] := -6 -42;
+set C[112] := -12 -18;
+set C[113] := -12 -24;
+set C[114] := -12 -30;
+set C[115] := -12 -36;
+set C[116] := -12 -42;
+set C[117] := -18 -24;
+set C[118] := -18 -30;
+set C[119] := -18 -36;
+set C[120] := -18 -42;
+set C[121] := -24 -30;
+set C[122] := -24 -36;
+set C[123] := -24 -42;
+set C[124] := -30 -36;
+set C[125] := -30 -42;
+set C[126] := -36 -42;
+set C[127] := 6 5 4 3 2 1;
+set C[128] := 12 11 10 9 8 7;
+set C[129] := 18 17 16 15 14 13;
+set C[130] := 24 23 22 21 20 19;
+set C[131] := 30 29 28 27 26 25;
+set C[132] := 36 35 34 33 32 31;
+set C[133] := 42 41 40 39 38 37;
+
+end;