summaryrefslogtreecommitdiff
path: root/simplex-glpk/src/kernel.cpp
blob: 27e743ad3799757d3c47d1fb81d3f7421684e07e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include <sycl/ext/intel/fpga_extensions.hpp>
#include <chrono>
#include "kernel.hpp"

/*
template<typename T>
SYCL_EXTERNAL bool checkOptimality(device_ptr<T> C, int size) {
    bool isOptimal = false;
	int positveValueCount = 0;
    //check if the coefficients of the objective function are negative
	for(int i=0; i<size;i++){
	    float value = C[i];
	    if(value >= 0){
	        positveValueCount++;
	    }
	}
	//if all the constraints are positive now,the table is optimal
	if(positveValueCount == size){
	    isOptimal = true;
	}
    return isOptimal;
}


template<typename T>
SYCL_EXTERNAL int findPivotColumn(device_ptr<T> C, int size) {
	int location = 0;
	float minimum = C[0];
	for(int i=1; i<size; ++i) {
		if(C[i]<minimum) {
			minimum = C[i];
			location = i;
		}
	}
	return location;
}


//find the row with the pivot value.The least value item's row in the B array
template<typename T>
SYCL_EXTERNAL int findPivotRow(device_ptr<T> A, device_ptr<T> B, device_ptr<T> C, int pivotColumn, int rows, int cols, bool *isUnbounded) {
	int negativeValueCount = 0;
	for (int i = 0; i < rows; i++) {
		// 2d to 1d array index mapping
		int pivotColumnIndex = (i*cols)+pivotColumn;
		if (A[pivotColumnIndex] <= 0) {
			negativeValueCount += 1;
		}
	}
	int location = 0;
	//checking the unbound condition if all the values are negative ones
	if (negativeValueCount == rows) {
		*isUnbounded = true;
	} else {
		float minimum = 99999999.0;

		for (int i = 0; i < rows; ++i) {
			// 2d to 1d array index mapping
			int pivotColumnIndex = (i*cols)+pivotColumn;
			float tmpACols = A[pivotColumnIndex];
			if (tmpACols > 0) {
				float result = B[i] / tmpACols;
				if (result > 0 && result < minimum) {
					minimum = result;
					location = i;
				}
			}
		}
	}
	return location;
}

template<typename T>
SYCL_EXTERNAL void doPivotting(device_ptr<T> A, device_ptr<T> B, device_ptr<T> C, int pivotRow, int pivotColumn, int rows, int cols) {
	int columnIndex = (pivotRow*cols)+pivotColumn;
	float pivetValue = A[columnIndex];

	float pivotRowVals[6]; //the column with the pivot
	float pivotColVals[3]; //the row with the pivot
	float rowNew[6]; //the row after processing the pivot value

	float maximum = 0;
	maximum = maximum-(C[pivotColumn]*(B[pivotRow]/pivetValue)); //set the maximum step by step


	//get the row that has the pivot value
	for (int i = 0; i < cols; ++i) {
		int pivotRowIndex = (pivotRow*cols)+i;
		pivotRowVals[i] = A[pivotRowIndex];
	}
	//get the column that has the pivot value
	for (int j = 0; j < rows; ++j) {
		int pivotColIndex = (j*cols)+pivotColumn;
		pivotColVals[j] = A[pivotColIndex];
	}

	//set the row values that has the pivot value divided by the pivot value and put into new row
	for (int k = 0; k < cols; ++k) {
		rowNew[k] = pivotRowVals[k]/pivetValue;
	}

	B[pivotRow] = B[pivotRow]/pivetValue;

	//process the other coefficients in the A array by subtracting
	for (int m=0; m < rows; ++m) {
		//ignore the pivot row as we already calculated that
		if (m != pivotRow) {
			for (int p = 0; p<cols; ++p) {
				float multiplyValue = pivotColVals[m];
				int indexA_M_P = (m*cols)+p;
				A[indexA_M_P] = A[indexA_M_P] - (multiplyValue * rowNew[p]);
				//C[p] = C[p] - (multiplyValue*C[pivotRow]);
				//B[i] = B[i] - (multiplyValue*B[pivotRow]);
			}

		}
	}

	//process the values of the B array
	for (int i = 0; i<rows; ++i) {  // rows = B.size()
		if (i != pivotRow) {
			float multiplyValue = pivotColVals[i];
			B[i] = B[i]-(multiplyValue*B[pivotRow]);

		}
	}
	//the least coefficient of the constraints of the objective function
	float multiplyValue = C[pivotColumn];
	//process the C array
	for (int i = 0; i < C.size(); i++) {
		C[i] = C[i]-(multiplyValue * rowNew[i]);

	}

	//replacing the pivot row in the new calculated A array
	for (int i = 0; i<cols; ++i) {
		int indexA_pivotRow_i = (pivotRow*cols)+i;
		A[indexA_pivotRow_i] = rowNew[i];
	}
}

// Forward declare the kernel names in the global scope. This FPGA best practice
// reduces compiler name mangling in the optimization reports.
class SimplexCalc;

double RunKernel(queue &q, std::vector<T> &inAHost, std::vector<T> &inBHost,
		std::vector<T> &inCHost, std::vector<int>& resultFlags) {

	int rowSizeA = inBHost.size();
	int colSizeA = inCHost.size();

	T *inADevice = malloc_device<T> (inAHost.size(), q);
	T *inBDevice = malloc_device<T> (inBHost.size(), q);
	T *inCDevice = malloc_device<T> (inCHost.size(), q);
	int *inResultFlagsDevice = malloc_device<int> (resultFlags.size(), q);

	if (inADevice == nullptr) {
		std::cerr << "ERROR: failed to allocate space for 'inADevice'\n";
		std::terminate();
	}
	if (inBDevice == nullptr) {
		std::cerr << "ERROR: failed to allocate space for 'inBDevice'\n";
		std::terminate();
	}
	if (inCDevice == nullptr) {
		std::cerr << "ERROR: failed to allocate space for 'inCDevice'\n";
		std::terminate();
	}

	auto start = std::chrono::high_resolution_clock::now();

	q.memcpy(inADevice, inAHost.data(), inAHost.size()*sizeof(T)).wait();
	q.memcpy(inBDevice, inBHost.data(), inBHost.size() * sizeof(T)).wait();
	q.memcpy(inCDevice, inCHost.data(), inCHost.size() * sizeof(T)).wait();
	q.memcpy(inResultFlagsDevice, resultFlags.data(), resultFlags.size()*sizeof(int)).wait();

	q.submit([&](handler &h) {
		h.single_task < SimplexCalc > ([=]()[[intel::kernel_args_restrict]] {
			device_ptr<T> inA(inADevice);
			device_ptr<T> inB(inBDevice);
			device_ptr<T> inC(inCDevice);
			device_ptr<int> inResultFlags(inResultFlagsDevice);

			bool tempIsOptimizal = checkOptimality(inC, colSizeA);
			if (tempIsOptimizal) {
				inResultFlags[0] = 1;
				return;
			} else {
				inResultFlags[0] = 0;
			}

			int pivotColumn = findPivotColumn(inC, colSizeA);
			inResultFlags[1] = pivotColumn;

			inA[0] = 43.0; //test only
			bool isUnbounded = true;
			int pivotRow = findPivotRow(inA, inB, inC, pivotColumn, rowSizeA, colSizeA, &isUnbounded);
			inResultFlags[2] = pivotRow;
		});
	}).wait();

	q.memcpy(inAHost.data(), inADevice, inAHost.size()*sizeof(T)).wait();
	q.memcpy(inBHost.data(), inBDevice, inBHost.size()*sizeof(T)).wait();
	q.memcpy(inCHost.data(), inCDevice, inCHost.size()*sizeof(T)).wait();
	q.memcpy(resultFlags.data(), inResultFlagsDevice, resultFlags.size()*sizeof(int)).wait();

	auto end = std::chrono::high_resolution_clock::now();
	std::chrono::duration<double, std::milli> diff = end - start;

	sycl::free(inADevice, q);
	sycl::free(inBDevice, q);
	sycl::free(inCDevice, q);
	sycl::free(inResultFlagsDevice, q);

	return diff.count();
}
*/


// Forward declare the kernel names in the global scope. This FPGA best practice
// reduces compiler name mangling in the optimization reports.
class SimplexCalc;

double RunKernel(queue &q, std::vector<T> &inAHost, std::vector<T> &inBHost,
		std::vector<T> &inCHost, std::vector<int>& resultFlags) {

    constexpr int value = 100000;
	size_t itemSize = 1000;
	range numItems{itemSize};


    int *parallel = malloc_shared<int>(itemSize, q);
    if (parallel == nullptr) {
    	 sycl::free(parallel, q);
         std::cout << "Shared memory allocation failure.\n";
         return -1;
    }

	auto start = std::chrono::high_resolution_clock::now();

	  // Use parallel_for to populate consecutive numbers starting with a specified
	  // value in parallel on device. This executes the kernel.
	  //    1st parameter is the number of work items to use.
	  //    2nd parameter is the kernel, a lambda that specifies what to do per
	  //    work item. The parameter of the lambda is the work item id.
	  // SYCL supports unnamed lambda kernel by default.
	  auto e = q.parallel_for(numItems, [=](auto i) {
		  parallel[i] = value + i;
	  });

	  // q.parallel_for() is an asynchronous call. SYCL runtime enqueues and runs
	  // the kernel asynchronously. Wait for the asynchronous call to complete.
	  e.wait();


	auto end = std::chrono::high_resolution_clock::now();
	std::chrono::duration<double, std::milli> diff = end - start;

	sycl::free(parallel, q);


	return diff.count();
}