1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
/* fp2rat.c (convert floating-point number to rational number) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
* Copyright (C) 2000-2013 Free Software Foundation, Inc.
* Written by Andrew Makhorin <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "misc.h"
/***********************************************************************
* NAME
*
* fp2rat - convert floating-point number to rational number
*
* SYNOPSIS
*
* #include "misc.h"
* int fp2rat(double x, double eps, double *p, double *q);
*
* DESCRIPTION
*
* Given a floating-point number 0 <= x < 1 the routine fp2rat finds
* its "best" rational approximation p / q, where p >= 0 and q > 0 are
* integer numbers, such that |x - p / q| <= eps.
*
* RETURNS
*
* The routine fp2rat returns the number of iterations used to achieve
* the specified precision eps.
*
* EXAMPLES
*
* For x = sqrt(2) - 1 = 0.414213562373095 and eps = 1e-6 the routine
* gives p = 408 and q = 985, where 408 / 985 = 0.414213197969543.
*
* BACKGROUND
*
* It is well known that every positive real number x can be expressed
* as the following continued fraction:
*
* x = b[0] + a[1]
* ------------------------
* b[1] + a[2]
* -----------------
* b[2] + a[3]
* ----------
* b[3] + ...
*
* where:
*
* a[k] = 1, k = 0, 1, 2, ...
*
* b[k] = floor(x[k]), k = 0, 1, 2, ...
*
* x[0] = x,
*
* x[k] = 1 / frac(x[k-1]), k = 1, 2, 3, ...
*
* To find the "best" rational approximation of x the routine computes
* partial fractions f[k] by dropping after k terms as follows:
*
* f[k] = A[k] / B[k],
*
* where:
*
* A[-1] = 1, A[0] = b[0], B[-1] = 0, B[0] = 1,
*
* A[k] = b[k] * A[k-1] + a[k] * A[k-2],
*
* B[k] = b[k] * B[k-1] + a[k] * B[k-2].
*
* Once the condition
*
* |x - f[k]| <= eps
*
* has been satisfied, the routine reports p = A[k] and q = B[k] as the
* final answer.
*
* In the table below here is some statistics obtained for one million
* random numbers uniformly distributed in the range [0, 1).
*
* eps max p mean p max q mean q max k mean k
* -------------------------------------------------------------
* 1e-1 8 1.6 9 3.2 3 1.4
* 1e-2 98 6.2 99 12.4 5 2.4
* 1e-3 997 20.7 998 41.5 8 3.4
* 1e-4 9959 66.6 9960 133.5 10 4.4
* 1e-5 97403 211.7 97404 424.2 13 5.3
* 1e-6 479669 669.9 479670 1342.9 15 6.3
* 1e-7 1579030 2127.3 3962146 4257.8 16 7.3
* 1e-8 26188823 6749.4 26188824 13503.4 19 8.2
*
* REFERENCES
*
* W. B. Jones and W. J. Thron, "Continued Fractions: Analytic Theory
* and Applications," Encyclopedia on Mathematics and Its Applications,
* Addison-Wesley, 1980. */
int fp2rat(double x, double eps, double *p, double *q)
{ int k;
double xk, Akm1, Ak, Bkm1, Bk, ak, bk, fk, temp;
xassert(0.0 <= x && x < 1.0);
for (k = 0; ; k++)
{ xassert(k <= 100);
if (k == 0)
{ /* x[0] = x */
xk = x;
/* A[-1] = 1 */
Akm1 = 1.0;
/* A[0] = b[0] = floor(x[0]) = 0 */
Ak = 0.0;
/* B[-1] = 0 */
Bkm1 = 0.0;
/* B[0] = 1 */
Bk = 1.0;
}
else
{ /* x[k] = 1 / frac(x[k-1]) */
temp = xk - floor(xk);
xassert(temp != 0.0);
xk = 1.0 / temp;
/* a[k] = 1 */
ak = 1.0;
/* b[k] = floor(x[k]) */
bk = floor(xk);
/* A[k] = b[k] * A[k-1] + a[k] * A[k-2] */
temp = bk * Ak + ak * Akm1;
Akm1 = Ak, Ak = temp;
/* B[k] = b[k] * B[k-1] + a[k] * B[k-2] */
temp = bk * Bk + ak * Bkm1;
Bkm1 = Bk, Bk = temp;
}
/* f[k] = A[k] / B[k] */
fk = Ak / Bk;
#if 0
print("%.*g / %.*g = %.*g",
DBL_DIG, Ak, DBL_DIG, Bk, DBL_DIG, fk);
#endif
if (fabs(x - fk) <= eps)
break;
}
*p = Ak;
*q = Bk;
return k;
}
/* eof */
|