1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
/* strong.c (find all strongly connected components of graph) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
* Copyright (C) 2009-2016 Free Software Foundation, Inc.
* Written by Andrew Makhorin <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpk.h"
#include "mc13d.h"
/***********************************************************************
* NAME
*
* glp_strong_comp - find all strongly connected components of graph
*
* SYNOPSIS
*
* int glp_strong_comp(glp_graph *G, int v_num);
*
* DESCRIPTION
*
* The routine glp_strong_comp finds all strongly connected components
* of the specified graph.
*
* The parameter v_num specifies an offset of the field of type int
* in the vertex data block, to which the routine stores the number of
* a strongly connected component containing that vertex. If v_num < 0,
* no component numbers are stored.
*
* The components are numbered in arbitrary order from 1 to nc, where
* nc is the total number of components found, 0 <= nc <= |V|. However,
* the component numbering has the property that for every arc (i->j)
* in the graph the condition num(i) >= num(j) holds.
*
* RETURNS
*
* The routine returns nc, the total number of components found. */
int glp_strong_comp(glp_graph *G, int v_num)
{ glp_vertex *v;
glp_arc *a;
int i, k, last, n, na, nc, *icn, *ip, *lenr, *ior, *ib, *lowl,
*numb, *prev;
if (v_num >= 0 && v_num > G->v_size - (int)sizeof(int))
xerror("glp_strong_comp: v_num = %d; invalid offset\n",
v_num);
n = G->nv;
if (n == 0)
{ nc = 0;
goto done;
}
na = G->na;
icn = xcalloc(1+na, sizeof(int));
ip = xcalloc(1+n, sizeof(int));
lenr = xcalloc(1+n, sizeof(int));
ior = xcalloc(1+n, sizeof(int));
ib = xcalloc(1+n, sizeof(int));
lowl = xcalloc(1+n, sizeof(int));
numb = xcalloc(1+n, sizeof(int));
prev = xcalloc(1+n, sizeof(int));
k = 1;
for (i = 1; i <= n; i++)
{ v = G->v[i];
ip[i] = k;
for (a = v->out; a != NULL; a = a->t_next)
icn[k++] = a->head->i;
lenr[i] = k - ip[i];
}
xassert(na == k-1);
nc = mc13d(n, icn, ip, lenr, ior, ib, lowl, numb, prev);
if (v_num >= 0)
{ xassert(ib[1] == 1);
for (k = 1; k <= nc; k++)
{ last = (k < nc ? ib[k+1] : n+1);
xassert(ib[k] < last);
for (i = ib[k]; i < last; i++)
{ v = G->v[ior[i]];
memcpy((char *)v->data + v_num, &k, sizeof(int));
}
}
}
xfree(icn);
xfree(ip);
xfree(lenr);
xfree(ior);
xfree(ib);
xfree(lowl);
xfree(numb);
xfree(prev);
done: return nc;
}
/* eof */
|