1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
/* maxflp.c (convert maximum flow problem to LP) */
/***********************************************************************
* This code is part of GLPK (GNU Linear Programming Kit).
* Copyright (C) 2009-2016 Free Software Foundation, Inc.
* Written by Andrew Makhorin <mao@gnu.org>.
*
* GLPK is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GLPK is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/
#include "env.h"
#include "glpk.h"
/***********************************************************************
* NAME
*
* glp_maxflow_lp - convert maximum flow problem to LP
*
* SYNOPSIS
*
* void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s,
* int t, int a_cap);
*
* DESCRIPTION
*
* The routine glp_maxflow_lp builds an LP problem, which corresponds
* to the maximum flow problem on the specified network G. */
void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s,
int t, int a_cap)
{ glp_vertex *v;
glp_arc *a;
int i, j, type, ind[1+2];
double cap, val[1+2];
if (!(names == GLP_ON || names == GLP_OFF))
xerror("glp_maxflow_lp: names = %d; invalid parameter\n",
names);
if (!(1 <= s && s <= G->nv))
xerror("glp_maxflow_lp: s = %d; source node number out of rang"
"e\n", s);
if (!(1 <= t && t <= G->nv))
xerror("glp_maxflow_lp: t = %d: sink node number out of range "
"\n", t);
if (s == t)
xerror("glp_maxflow_lp: s = t = %d; source and sink nodes must"
" be distinct\n", s);
if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double))
xerror("glp_maxflow_lp: a_cap = %d; invalid offset\n", a_cap);
glp_erase_prob(lp);
if (names) glp_set_prob_name(lp, G->name);
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, G->nv);
for (i = 1; i <= G->nv; i++)
{ v = G->v[i];
if (names) glp_set_row_name(lp, i, v->name);
if (i == s)
type = GLP_LO;
else if (i == t)
type = GLP_UP;
else
type = GLP_FX;
glp_set_row_bnds(lp, i, type, 0.0, 0.0);
}
if (G->na > 0) glp_add_cols(lp, G->na);
for (i = 1, j = 0; i <= G->nv; i++)
{ v = G->v[i];
for (a = v->out; a != NULL; a = a->t_next)
{ j++;
if (names)
{ char name[50+1];
sprintf(name, "x[%d,%d]", a->tail->i, a->head->i);
xassert(strlen(name) < sizeof(name));
glp_set_col_name(lp, j, name);
}
if (a->tail->i != a->head->i)
{ ind[1] = a->tail->i, val[1] = +1.0;
ind[2] = a->head->i, val[2] = -1.0;
glp_set_mat_col(lp, j, 2, ind, val);
}
if (a_cap >= 0)
memcpy(&cap, (char *)a->data + a_cap, sizeof(double));
else
cap = 1.0;
if (cap == DBL_MAX)
type = GLP_LO;
else if (cap != 0.0)
type = GLP_DB;
else
type = GLP_FX;
glp_set_col_bnds(lp, j, type, 0.0, cap);
if (a->tail->i == s)
glp_set_obj_coef(lp, j, +1.0);
else if (a->head->i == s)
glp_set_obj_coef(lp, j, -1.0);
}
}
xassert(j == G->na);
return;
}
/* eof */
|