1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
|
# DIST, a product distribution model
#
# References:
# Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language
# for Mathematical Programming." Management Science 36 (1990) 519-554.
### SHIPPING SETS AND PARAMETERS ###
set whse 'warehouses'; # Locations from which demand is satisfied
set dctr 'distribution centers' within whse;
# Locations from which product may be shipped
param sc 'shipping cost' {dctr,whse} >= 0;
# Shipping costs, to whse from dctr, in $ / 100 lb
param huge 'largest shipping cost' > 0;
# Largest cost allowed for a usable shipping route
param msr 'minimum size restriction' {dctr,whse} logical;
# True indicates a minimum-size restriction on
# direct shipments using this dctr --> whse route
param dsr 'direct shipment requirement' {dctr} >= 0;
# Minimum total demand, in pallets, needed to
# allow shipment on routes subject to the
# minimum size restriction
### PLANT SETS AND PARAMETERS ###
set fact 'factories' within dctr;
# Locations where product is manufactured
param rtmin 'regular-time total minimum' >= 0;
# Lower limit on (average) total regular-time
# crews employed at all factories
param rtmax 'regular-time total maximum' >= rtmin;
# Upper limit on (average) total regular-time
# crews employed at all factories
param otmin 'overtime total minimum' >= 0;
# Lower limit on total overtime hours at all factories
param otmax 'overtime total maximum' >= otmin;
# Upper limit on total overtime hours at all factories
param rmin 'regular-time minimums' {fact} >= 0;
# Lower limits on (average) regular-time crews
param rmax 'regular-time maximums' {f in fact} >= rmin[f];
# Upper limits on (average) regular-time crews
param omin 'overtime minimums' {fact} >= 0;
# Lower limits on overtime hours
param omax 'overtime maximums' {f in fact} >= omin[f];
# Upper limits on overtime hours
param hd 'hours per day' {fact} >= 0;
# Regular-time hours per working day
param dp 'days in period' {fact} > 0;
# Working days in the current planning period
### PRODUCT SETS AND PARAMETERS ###
set prd 'products'; # Elements of the product group
param wt 'weight' {prd} > 0;
# Weight in 100 lb / 1000 cases
param cpp 'cases per pallet' {prd} > 0;
# Cases of product per shipping pallet
param tc 'transshipment cost' {prd} >= 0;
# Transshipment cost in $ / 1000 cases
param pt 'production time' {prd,fact} >= 0;
# Crew-hours to produce 1000 cases
param rpc 'regular-time production cost' {prd,fact} >= 0;
# Cost of production on regular time,
# in $ / 1000 cases
param opc 'overtime production cost' {prd,fact} >= 0;
# Cost of production on overtime, in $ / 1000 cases
### DEMAND SETS AND PARAMETERS ###
param dt 'total demand' {prd} >= 0;
# Total demands for products, in 1000s
param ds 'demand shares' {prd,whse} >= 0.0, <= 1.0;
# Historical demand data, from which each
# warehouse's share of total demand is deduced
param dstot {p in prd} := sum {w in whse} ds[p,w];
# Total of demand shares; should be 1, but often isn't
param dem 'demand' {p in prd, w in whse} := dt[p] * ds[p,w] / dstot[p];
# Projected demands to be satisfied, in 1000s
set rt 'shipping routes available' :=
{d in dctr, w in whse:
d <> w and sc[d,w] < huge and
(w in dctr or sum {p in prd} dem[p,w] > 0) and
not (msr[d,w] and sum {p in prd} 1000*dem[p,w]/cpp[p] < dsr[d]) };
# List of ordered pairs that represent routes
# on which shipments are allowed
### VARIABLES ###
var Rprd 'regular-time production' {prd,fact} >= 0;
# Regular-time production of each product
# at each factory, in 1000s of cases
var Oprd 'overtime production' {prd,fact} >= 0;
# Overtime production of each product
# at each factory, in 1000s of cases
var Ship 'shipments' {prd,rt} >= 0;
# Shipments of each product on each allowed route,
# in 1000s of cases
var Trans 'transshipments' {prd,dctr} >= 0;
# Transshipments of each product at each
# distribution center, in 1000s of cases
### OBJECTIVE ###
minimize cost: sum {p in prd, f in fact} rpc[p,f] * Rprd[p,f] +
sum {p in prd, f in fact} opc[p,f] * Oprd[p,f] +
sum {p in prd, (d,w) in rt} sc[d,w] * wt[p] * Ship[p,d,w] +
sum {p in prd, d in dctr} tc[p] * Trans[p,d];
# Total cost: regular production, overtime
# production, shipping, and transshipment
### CONSTRAINTS ###
rtlim 'regular-time total limits':
rtmin <= sum {p in prd, f in fact}
(pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rtmax;
# Total crews must lie between limits
otlim 'overtime total limits':
otmin <= sum {p in prd, f in fact} pt[p,f] * Oprd[p,f] <= otmax;
# Total overtime must lie between limits
rlim 'regular-time limits' {f in fact}:
rmin[f] <= sum {p in prd}
(pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rmax[f];
# Crews at each factory must lie between limits
olim 'overtime limits' {f in fact}:
omin[f] <= sum {p in prd} pt[p,f] * Oprd[p,f] <= omax[f];
# Overtime at each factory must lie between limits
noRprd 'no regular production' {p in prd, f in fact: rpc[p,f] = 0}:
Rprd[p,f] = 0;
noOprd 'no overtime production' {p in prd, f in fact: opc[p,f] = 0}:
Oprd[p,f] = 0; # Do not produce where specified cost is zero
bal 'material balance' {p in prd, w in whse}:
sum {(v,w) in rt}
Ship [p,v,w] + (if w in fact then Rprd[p,w] + Oprd[p,w]) =
dem[p,w] + (if w in dctr then sum {(w,v) in rt} Ship[p,w,v]);
# Demand is satisfied by shipment into warehouse
# plus production (if it is a factory)
# minus shipment out (if it is a distn. center)
trdef 'transshipment definition' {p in prd, d in dctr}:
Trans[p,d] >= sum {(d,w) in rt} Ship [p,d,w] -
(if d in fact then Rprd[p,d] + Oprd[p,d]);
# Transshipment at a distribution center is
# shipments out less production (if any)
### DATA -- 3 PRODUCTS ###
data;
set prd := 18REG 24REG 24PRO ;
set whse := w01 w02 w03 w04 w05 w06 w08 w09 w12 w14 w15 w17
w18 w19 w20 w21 w24 w25 w26 w27 w28 w29 w30 w31
w32 w33 w34 w35 w36 w37 w38 w39 w40 w41 w42 w43
w44 w45 w46 w47 w48 w49 w50 w51 w53 w54 w55 w56
w57 w59 w60 w61 w62 w63 w64 w65 w66 w68 w69 w71
w72 w73 w74 w75 w76 w77 w78 w79 w80 w81 w82 w83
w84 w85 w86 w87 w89 w90 w91 w92 w93 w94 w95 w96
w98 x22 x23 ;
set dctr := w01 w02 w03 w04 w05 w62 w76 w96 ;
set fact := w01 w05 w96 ;
param huge := 99. ;
param rtmin := 0.0 ;
param rtmax := 8.0 ;
param otmin := 0.0 ;
param otmax := 96.0 ;
param rmin := w01 0.00 w05 0.00 w96 0.00 ;
param rmax := w01 3.00 w05 2.00 w96 3.00 ;
param omin := w01 0.0 w05 0.0 w96 0.0 ;
param omax := w01 48.0 w05 0.0 w96 48.0 ;
param hd := w01 8.0 w05 8.0 w96 8.0 ;
param dp := w01 19.0 w05 19.0 w96 19.0 ;
param wt := 18REG 47.3 24REG 63.0 24PRO 63.0 ;
param tc := 18REG 40.00 24REG 45.00 24PRO 45.00 ;
param dt := 18REG 376.0 24REG 172.4 24PRO 316.3 ;
param cpp := 18REG 102. 24REG 91. 24PRO 91. ;
param dsr := w01 96. w02 96. w03 96. w04 96. w05 96.
w62 96. w76 96. w96 96. ;
param pt (tr) :
18REG 24REG 24PRO :=
w01 1.194 1.429 1.429
w05 1.194 1.509 1.509
w96 0.000 1.600 1.600 ;
param rpc (tr) :
18REG 24REG 24PRO :=
w01 2119. 2653. 2617.
w05 2489. 3182. 3176.
w96 0. 2925. 2918. ;
param opc (tr) :
18REG 24REG 24PRO :=
w01 2903. 3585. 3579.
w05 0. 0. 0.
w96 0. 3629. 3622. ;
param sc default 99.99 (tr) :
w01 w02 w03 w04 w05 w62 w76 w96 :=
w01 . 2.97 1.14 2.08 2.37 1.26 2.42 1.43
w02 4.74 . 4.17 6.12 7.41 3.78 7.04 5.21
w03 2.45 4.74 . 3.67 2.84 0.90 2.41 2.55
w04 1.74 5.03 2.43 . 3.19 2.45 2.69 0.58
w05 2.70 5.16 2.84 2.85 . 3.26 3.34 2.71
w06 1.99 4.17 2.13 2.19 2.52 2.06 2.00 1.51
w08 0.21 2.92 1.24 2.07 2.29 1.25 2.32 1.55
w09 0.66 3.76 1.41 2.47 1.82 1.66 . 1.87
w12 1.38 3.83 1.68 2.53 2.39 . 1.96 1.94
w14 2.47 1.58 2.40 3.59 3.85 2.25 . 3.05
w15 1.06 4.95 2.48 1.39 3.41 1.96 . 1.02
w17 0.88 3.39 1.46 2.00 2.67 1.45 . 1.46
w18 7.90 6.57 7.79 9.59 10.81 . . 6.70
w19 1.42 4.12 1.96 1.99 3.52 1.88 . 1.26
w20 3.03 1.59 2.34 4.76 3.98 1.88 . 3.73
w24 1.58 2.80 2.27 2.87 3.19 1.31 . 2.05
w25 1.51 5.05 2.74 0.57 2.98 . 2.95 0.27
w26 1.75 3.61 2.70 1.54 4.07 3.52 . 1.03
w27 2.48 6.87 3.17 1.59 2.08 3.45 . 0.99
w28 2.05 6.83 2.97 1.13 2.91 . . 1.26
w29 4.03 3.68 4.46 3.20 5.50 . . 3.20
w30 2.48 5.78 2.99 2.24 1.79 3.10 . 1.39
w31 2.34 5.41 2.87 1.67 1.66 . . 1.39
w32 14.36 . . . . . . .
w33 3.87 4.27 5.11 3.48 5.66 4.03 . 3.05
w34 3.26 4.80 3.21 2.70 4.14 . . 1.77
w35 2.34 2.84 2.89 3.35 3.78 2.68 . 2.52
w36 2.43 5.69 2.96 2.95 1.02 2.61 1.07 2.54
w37 2.23 4.64 2.41 1.99 4.30 2.61 . 1.44
w38 4.66 4.36 5.23 3.04 4.46 . . 3.82
w39 1.11 3.51 1.10 2.53 3.07 1.12 . 2.23
w40 2.99 4.78 4.23 1.57 3.92 . . 1.80
w41 4.93 4.00 5.43 4.45 6.31 . . 3.81
w42 3.86 6.55 5.03 2.11 4.41 . . 2.63
w43 4.61 4.45 3.77 1.22 4.31 . . 2.35
w44 2.05 4.48 1.06 3.70 3.46 1.10 . 3.21
w45 0.92 3.42 1.58 3.04 1.82 1.94 . 2.52
w46 1.36 2.44 0.95 3.08 2.78 0.39 2.16 2.37
w47 1.30 3.39 1.60 2.49 4.29 2.04 . 1.68
w48 1.65 3.78 1.03 2.97 2.21 1.31 . 2.74
w49 1.96 3.00 1.50 3.24 3.68 1.00 . 2.99
w50 0.90 4.14 1.60 1.95 3.61 1.61 . 1.52
w51 1.59 3.95 0.25 2.96 2.58 1.00 2.41 2.71
w53 1.59 3.79 1.28 3.12 3.10 0.89 . 2.98
w54 1.72 4.36 1.61 2.92 2.34 1.91 1.97 3.05
w55 2.45 2.73 2.21 4.47 4.30 2.57 . 4.48
w56 1.10 3.73 1.59 2.74 2.33 1.45 . 2.44
w57 0.95 3.39 1.37 2.30 2.47 1.15 . 1.95
w59 3.29 5.35 3.32 3.81 1.52 3.38 1.34 4.08
w60 2.41 6.12 2.46 3.65 2.35 . 1.37 4.06
w61 3.32 5.50 3.41 3.38 1.23 . 0.99 4.28
w62 1.12 3.00 0.82 3.22 2.95 . 3.33 2.53
w63 3.59 6.36 3.25 4.12 1.84 3.59 1.46 4.03
w64 1.85 4.45 2.17 3.43 2.13 2.03 . 4.02
w65 2.78 4.79 2.81 2.94 1.54 2.90 1.07 2.94
w66 3.90 5.79 3.05 3.65 1.36 3.39 1.22 3.57
w68 2.61 5.20 2.90 2.34 1.68 3.19 1.48 2.31
w69 2.94 5.21 2.78 3.43 0.21 3.26 0.68 2.54
w71 2.06 4.98 2.38 2.44 1.59 2.97 1.05 2.55
w72 2.61 5.50 2.83 3.12 1.35 3.23 0.88 2.99
w73 8.52 6.16 8.03 8.83 10.44 7.38 10.26 .
w74 6.11 5.46 9.07 9.38 10.80 . . 8.25
w75 2.66 4.94 2.87 3.69 1.52 3.15 1.24 4.00
w76 1.99 5.26 2.23 3.36 0.58 3.17 . 2.50
w77 4.32 3.07 5.05 3.88 6.04 . . 4.15
w78 5.60 2.59 5.78 5.56 7.10 . . 5.60
w79 4.25 2.32 4.93 4.57 6.04 . . 4.58
w80 5.94 4.00 5.60 7.02 9.46 . . 7.51
w81 5.39 2.21 5.10 6.22 6.46 . . 6.58
w82 8.80 5.69 9.29 9.88 11.69 8.63 11.52 .
w83 4.40 . 5.24 5.21 5.81 3.91 7.04 5.33
w84 5.87 5.43 6.17 5.70 7.63 . . 5.70
w85 3.90 3.65 3.38 4.57 5.64 3.05 . 5.04
w86 5.48 2.10 5.70 6.37 7.33 . . 6.19
w87 8.88 5.54 9.50 9.71 11.64 8.85 11.68 .
w89 4.62 4.01 4.03 6.30 6.30 3.81 . 7.77
w90 4.35 2.72 4.61 4.01 5.60 . . 3.20
w91 7.61 4.42 7.83 6.85 8.79 . . 7.66
w92 7.15 2.69 6.91 7.20 . . . 7.06
w93 3.17 3.95 4.37 3.74 5.05 . . 2.40
w94 1.21 3.07 0.90 2.74 3.17 . 2.63 2.39
w95 5.82 3.29 6.55 7.06 11.47 . . 7.83
w96 1.77 5.20 2.72 0.59 3.47 2.48 . .
w98 3.04 1.92 3.64 3.70 4.90 3.05 . 3.88
x22 4.08 6.25 4.15 4.30 1.77 . 1.77 .
x23 3.39 5.74 3.55 4.08 1.69 . 1.47 . ;
param msr (tr) :
w01 w02 w03 w04 w05 w62 w76 w96 :=
w01 0 0 0 0 0 0 1 0
w02 0 0 0 0 0 0 1 0
w03 0 0 0 0 0 0 1 0
w04 0 0 0 0 0 0 1 0
w05 0 0 0 0 0 0 0 0
w06 0 1 1 1 1 1 1 1
w08 0 1 1 1 1 1 1 1
w09 0 1 1 1 1 1 0 1
w12 0 1 1 1 1 0 1 1
w14 1 1 1 1 1 0 0 1
w15 0 1 1 1 1 1 0 1
w17 0 1 1 1 1 1 0 1
w18 0 1 1 1 1 0 0 1
w19 0 1 1 1 1 0 0 1
w20 1 1 1 1 1 0 0 1
w24 0 1 1 1 1 0 0 1
w25 0 1 1 1 1 0 1 0
w26 1 1 1 0 1 1 0 1
w27 1 1 1 0 1 1 0 1
w28 1 1 1 0 1 0 0 1
w29 0 1 1 1 1 0 0 1
w30 1 1 1 0 1 1 0 1
w31 1 1 1 0 1 0 0 1
w32 0 0 0 0 0 0 0 0
w33 1 0 1 1 1 1 0 1
w34 1 1 1 0 1 0 0 1
w35 1 1 1 1 1 0 0 1
w36 0 1 1 1 0 1 1 1
w37 1 1 1 0 1 1 0 1
w38 1 1 1 0 1 0 0 1
w39 0 1 1 1 1 1 0 1
w40 1 1 1 0 1 0 0 1
w41 1 0 1 1 1 0 0 1
w42 1 1 1 0 1 0 0 1
w43 1 1 1 0 1 0 0 1
w44 1 1 1 1 1 0 0 1
w45 0 1 1 1 1 1 0 1
w46 0 1 1 1 1 0 1 1
w47 0 1 1 1 1 1 0 1
w48 0 1 1 1 1 0 0 1
w49 1 1 1 1 1 0 0 1
w50 0 1 1 1 1 1 0 1
w51 0 1 1 1 1 0 1 1
w53 1 1 1 1 1 0 0 1
w54 0 1 1 1 1 1 1 1
w55 0 1 1 1 1 0 0 1
w56 0 1 1 1 1 1 0 1
w57 0 1 1 1 1 1 0 1
w59 0 1 1 1 0 1 1 1
w60 0 1 1 1 1 0 1 1
w61 0 1 1 1 0 0 1 1
w62 0 0 0 0 0 0 1 0
w63 0 1 1 1 0 1 1 1
w64 0 1 1 1 1 1 0 1
w65 0 1 1 1 0 1 1 1
w66 0 1 1 1 0 1 1 1
w68 0 1 1 1 0 1 1 1
w69 0 1 1 1 0 1 1 1
w71 0 1 1 1 0 1 1 1
w72 0 1 1 1 0 1 1 1
w73 0 1 1 1 0 1 1 0
w74 0 1 1 1 0 0 0 1
w75 0 1 1 1 0 1 1 1
w76 0 0 0 0 0 0 0 0
w77 1 0 1 1 1 0 0 1
w78 1 0 1 1 1 0 0 1
w79 1 0 1 1 1 0 0 1
w80 1 0 1 1 1 0 0 1
w81 1 0 1 1 1 0 0 1
w82 1 0 1 1 1 1 1 0
w83 1 0 1 1 1 0 1 1
w84 1 0 1 1 1 0 0 1
w85 1 1 1 1 1 0 0 1
w86 1 0 1 1 1 0 0 1
w87 1 0 1 1 1 1 1 0
w89 1 0 1 1 1 1 0 1
w90 0 1 1 1 1 0 0 1
w91 1 0 1 1 1 0 0 1
w92 1 0 1 1 1 0 0 1
w93 1 1 1 0 1 0 0 1
w94 0 0 1 1 1 0 1 1
w95 1 0 1 1 1 0 0 1
w96 0 0 0 0 0 0 0 0
w98 1 0 1 1 1 1 0 1
x22 1 1 1 1 0 0 1 0
x23 1 1 1 1 0 0 1 0 ;
param ds default 0.000 (tr) :
18REG 24REG 24PRO :=
w01 0.000 0.000 0.008
w02 0.004 0.000 0.000
w03 0.000 0.000 0.000
w04 0.010 0.002 0.000
w05 0.000 0.000 0.000
w06 0.010 0.008 0.008
w08 0.030 0.024 0.024
w09 0.014 0.018 0.020
w12 0.014 0.012 0.010
w14 0.007 0.007 0.012
w15 0.010 0.019 0.018
w17 0.013 0.010 0.011
w19 0.015 0.012 0.009
w20 0.012 0.021 0.022
w21 0.000 0.000 0.000
w24 0.012 0.022 0.018
w25 0.019 0.025 0.020
w26 0.006 0.015 0.021
w27 0.008 0.010 0.015
w28 0.011 0.016 0.019
w29 0.008 0.020 0.013
w30 0.011 0.013 0.015
w31 0.011 0.013 0.017
w32 0.006 0.000 0.000
w33 0.000 0.015 0.014
w34 0.008 0.007 0.005
w35 0.002 0.006 0.014
w36 0.015 0.013 0.005
w37 0.017 0.016 0.015
w38 0.015 0.009 0.012
w39 0.007 0.017 0.022
w40 0.009 0.014 0.020
w41 0.003 0.014 0.011
w42 0.017 0.011 0.012
w43 0.009 0.013 0.011
w44 0.002 0.012 0.012
w45 0.016 0.025 0.028
w46 0.038 0.062 0.040
w47 0.007 0.010 0.010
w48 0.003 0.015 0.016
w49 0.005 0.016 0.017
w50 0.011 0.008 0.007
w51 0.010 0.022 0.021
w53 0.004 0.026 0.020
w54 0.020 0.017 0.025
w55 0.004 0.019 0.028
w56 0.004 0.010 0.008
w57 0.014 0.020 0.018
w59 0.012 0.006 0.007
w60 0.019 0.010 0.009
w61 0.028 0.010 0.012
w62 0.000 0.000 0.000
w63 0.070 0.027 0.037
w64 0.009 0.004 0.005
w65 0.022 0.015 0.016
w66 0.046 0.017 0.020
w68 0.005 0.012 0.016
w69 0.085 0.036 0.039
w71 0.011 0.013 0.010
w72 0.089 0.031 0.034
w75 0.026 0.012 0.010
w77 0.001 0.004 0.002
w78 0.002 0.004 0.002
w79 0.001 0.004 0.002
w80 0.001 0.001 0.002
w81 0.001 0.003 0.002
w83 0.009 0.010 0.008
w84 0.001 0.002 0.002
w85 0.001 0.004 0.005
w86 0.001 0.002 0.002
w87 0.002 0.003 0.000
w89 0.001 0.001 0.002
w90 0.006 0.017 0.013
w91 0.002 0.010 0.013
w92 0.000 0.003 0.002
w93 0.002 0.006 0.007
w95 0.001 0.007 0.007
w96 0.000 0.000 0.000
w98 0.006 0.005 0.002 ;
end;
|