diff options
Diffstat (limited to 'glpk-5.0/src/bflib/ifu.c')
-rw-r--r-- | glpk-5.0/src/bflib/ifu.c | 390 |
1 files changed, 390 insertions, 0 deletions
diff --git a/glpk-5.0/src/bflib/ifu.c b/glpk-5.0/src/bflib/ifu.c new file mode 100644 index 0000000..5fcfa9a --- /dev/null +++ b/glpk-5.0/src/bflib/ifu.c @@ -0,0 +1,390 @@ +/* ifu.c (dense updatable IFU-factorization) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* Copyright (C) 2012-2013 Free Software Foundation, Inc. +* Written by Andrew Makhorin <mao@gnu.org>. +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. +***********************************************************************/ + +#include "env.h" +#include "ifu.h" + +/*********************************************************************** +* ifu_expand - expand IFU-factorization +* +* This routine expands the IFU-factorization of the matrix A according +* to the following expansion of A: +* +* ( A c ) +* new A = ( ) +* ( r' d ) +* +* where c[1,...,n] is a new column, r[1,...,n] is a new row, and d is +* a new diagonal element. +* +* From the main equality F * A = U it follows that: +* +* ( F 0 ) ( A c ) ( FA Fc ) ( U Fc ) +* ( ) ( ) = ( ) = ( ), +* ( 0 1 ) ( r' d ) ( r' d ) ( r' d ) +* +* thus, +* +* ( F 0 ) ( U Fc ) +* new F = ( ), new U = ( ). +* ( 0 1 ) ( r' d ) +* +* Note that the resulting matrix U loses its upper triangular form due +* to row spike r', which should be eliminated. */ + +void ifu_expand(IFU *ifu, double c[/*1+n*/], double r[/*1+n*/], + double d) +{ /* non-optimized version */ + int n_max = ifu->n_max; + int n = ifu->n; + double *f_ = ifu->f; + double *u_ = ifu->u; + int i, j; + double t; +# define f(i,j) f_[(i)*n_max+(j)] +# define u(i,j) u_[(i)*n_max+(j)] + xassert(0 <= n && n < n_max); + /* adjust indexing */ + c++, r++; + /* set new zero column of matrix F */ + for (i = 0; i < n; i++) + f(i,n) = 0.0; + /* set new zero row of matrix F */ + for (j = 0; j < n; j++) + f(n,j) = 0.0; + /* set new unity diagonal element of matrix F */ + f(n,n) = 1.0; + /* set new column of matrix U to vector (old F) * c */ + for (i = 0; i < n; i++) + { /* u[i,n] := (i-th row of old F) * c */ + t = 0.0; + for (j = 0; j < n; j++) + t += f(i,j) * c[j]; + u(i,n) = t; + } + /* set new row of matrix U to vector r */ + for (j = 0; j < n; j++) + u(n,j) = r[j]; + /* set new diagonal element of matrix U to scalar d */ + u(n,n) = d; + /* increase factorization order */ + ifu->n++; +# undef f +# undef u + return; +} + +/*********************************************************************** +* ifu_bg_update - update IFU-factorization (Bartels-Golub) +* +* This routine updates IFU-factorization of the matrix A according to +* its expansion (see comments to the routine ifu_expand). The routine +* is based on the method proposed by Bartels and Golub [1]. +* +* RETURNS +* +* 0 The factorization has been successfully updated. +* +* 1 On some elimination step diagional element u[k,k] to be used as +* pivot is too small in magnitude. +* +* 2 Diagonal element u[n,n] is too small in magnitude (at the end of +* update). +* +* REFERENCES +* +* 1. R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming +* Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */ + +int ifu_bg_update(IFU *ifu, double c[/*1+n*/], double r[/*1+n*/], + double d) +{ /* non-optimized version */ + int n_max = ifu->n_max; + int n = ifu->n; + double *f_ = ifu->f; + double *u_ = ifu->u; +#if 1 /* FIXME */ + double tol = 1e-5; +#endif + int j, k; + double t; +# define f(i,j) f_[(i)*n_max+(j)] +# define u(i,j) u_[(i)*n_max+(j)] + /* expand factorization */ + ifu_expand(ifu, c, r, d); + /* NOTE: n keeps its old value */ + /* eliminate spike (non-zero subdiagonal elements) in last row of + * matrix U */ + for (k = 0; k < n; k++) + { /* if |u[k,k]| < |u[n,k]|, interchange k-th and n-th rows to + * provide |u[k,k]| >= |u[n,k]| for numeric stability */ + if (fabs(u(k,k)) < fabs(u(n,k))) + { /* interchange k-th and n-th rows of matrix U */ + for (j = k; j <= n; j++) + t = u(k,j), u(k,j) = u(n,j), u(n,j) = t; + /* interchange k-th and n-th rows of matrix F to keep the + * main equality F * A = U */ + for (j = 0; j <= n; j++) + t = f(k,j), f(k,j) = f(n,j), f(n,j) = t; + } + /* now |u[k,k]| >= |u[n,k]| */ + /* check if diagonal element u[k,k] can be used as pivot */ + if (fabs(u(k,k)) < tol) + { /* u[k,k] is too small in magnitude */ + return 1; + } + /* if u[n,k] = 0, elimination is not needed */ + if (u(n,k) == 0.0) + continue; + /* compute gaussian multiplier t = u[n,k] / u[k,k] */ + t = u(n,k) / u(k,k); + /* apply gaussian transformation to eliminate u[n,k] */ + /* (n-th row of U) := (n-th row of U) - t * (k-th row of U) */ + for (j = k+1; j <= n; j++) + u(n,j) -= t * u(k,j); + /* apply the same transformation to matrix F to keep the main + * equality F * A = U */ + for (j = 0; j <= n; j++) + f(n,j) -= t * f(k,j); + } + /* now matrix U is upper triangular */ + if (fabs(u(n,n)) < tol) + { /* u[n,n] is too small in magnitude */ + return 2; + } +# undef f +# undef u + return 0; +} + +/*********************************************************************** +* The routine givens computes the parameters of Givens plane rotation +* c = cos(teta) and s = sin(teta) such that: +* +* ( c -s ) ( a ) ( r ) +* ( ) ( ) = ( ) , +* ( s c ) ( b ) ( 0 ) +* +* where a and b are given scalars. +* +* REFERENCES +* +* G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */ + +static void givens(double a, double b, double *c, double *s) +{ /* non-optimized version */ + double t; + if (b == 0.0) + (*c) = 1.0, (*s) = 0.0; + else if (fabs(a) <= fabs(b)) + t = - a / b, (*s) = 1.0 / sqrt(1.0 + t * t), (*c) = (*s) * t; + else + t = - b / a, (*c) = 1.0 / sqrt(1.0 + t * t), (*s) = (*c) * t; + return; +} + +/*********************************************************************** +* ifu_gr_update - update IFU-factorization (Givens rotations) +* +* This routine updates IFU-factorization of the matrix A according to +* its expansion (see comments to the routine ifu_expand). The routine +* is based on Givens plane rotations [1]. +* +* RETURNS +* +* 0 The factorization has been successfully updated. +* +* 1 On some elimination step both elements u[k,k] and u[n,k] are too +* small in magnitude. +* +* 2 Diagonal element u[n,n] is too small in magnitude (at the end of +* update). +* +* REFERENCES +* +* 1. G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */ + +int ifu_gr_update(IFU *ifu, double c[/*1+n*/], double r[/*1+n*/], + double d) +{ /* non-optimized version */ + int n_max = ifu->n_max; + int n = ifu->n; + double *f_ = ifu->f; + double *u_ = ifu->u; +#if 1 /* FIXME */ + double tol = 1e-5; +#endif + int j, k; + double cs, sn; +# define f(i,j) f_[(i)*n_max+(j)] +# define u(i,j) u_[(i)*n_max+(j)] + /* expand factorization */ + ifu_expand(ifu, c, r, d); + /* NOTE: n keeps its old value */ + /* eliminate spike (non-zero subdiagonal elements) in last row of + * matrix U */ + for (k = 0; k < n; k++) + { /* check if elements u[k,k] and u[n,k] are eligible */ + if (fabs(u(k,k)) < tol && fabs(u(n,k)) < tol) + { /* both u[k,k] and u[n,k] are too small in magnitude */ + return 1; + } + /* if u[n,k] = 0, elimination is not needed */ + if (u(n,k) == 0.0) + continue; + /* compute parameters of Givens plane rotation */ + givens(u(k,k), u(n,k), &cs, &sn); + /* apply Givens rotation to k-th and n-th rows of matrix U to + * eliminate u[n,k] */ + for (j = k; j <= n; j++) + { double ukj = u(k,j), unj = u(n,j); + u(k,j) = cs * ukj - sn * unj; + u(n,j) = sn * ukj + cs * unj; + } + /* apply the same transformation to matrix F to keep the main + * equality F * A = U */ + for (j = 0; j <= n; j++) + { double fkj = f(k,j), fnj = f(n,j); + f(k,j) = cs * fkj - sn * fnj; + f(n,j) = sn * fkj + cs * fnj; + } + } + /* now matrix U is upper triangular */ + if (fabs(u(n,n)) < tol) + { /* u[n,n] is too small in magnitude */ + return 2; + } +# undef f +# undef u + return 0; +} + +/*********************************************************************** +* ifu_a_solve - solve system A * x = b +* +* This routine solves the system A * x = b, where the matrix A is +* specified by its IFU-factorization. +* +* Using the main equality F * A = U we have: +* +* A * x = b => F * A * x = F * b => U * x = F * b => +* +* x = inv(U) * F * b. +* +* On entry the array x should contain elements of the right-hand side +* vector b in locations x[1], ..., x[n], where n is the order of the +* matrix A. On exit this array will contain elements of the solution +* vector x in the same locations. +* +* The working array w should have at least 1+n elements (0-th element +* is not used). */ + +void ifu_a_solve(IFU *ifu, double x[/*1+n*/], double w[/*1+n*/]) +{ /* non-optimized version */ + int n_max = ifu->n_max; + int n = ifu->n; + double *f_ = ifu->f; + double *u_ = ifu->u; + int i, j; + double t; +# define f(i,j) f_[(i)*n_max+(j)] +# define u(i,j) u_[(i)*n_max+(j)] + xassert(0 <= n && n <= n_max); + /* adjust indexing */ + x++, w++; + /* y := F * b */ + memcpy(w, x, n * sizeof(double)); + for (i = 0; i < n; i++) + { /* y[i] := (i-th row of F) * b */ + t = 0.0; + for (j = 0; j < n; j++) + t += f(i,j) * w[j]; + x[i] = t; + } + /* x := inv(U) * y */ + for (i = n-1; i >= 0; i--) + { t = x[i]; + for (j = i+1; j < n; j++) + t -= u(i,j) * x[j]; + x[i] = t / u(i,i); + } +# undef f +# undef u + return; +} + +/*********************************************************************** +* ifu_at_solve - solve system A'* x = b +* +* This routine solves the system A'* x = b, where A' is a matrix +* transposed to the matrix A, specified by its IFU-factorization. +* +* Using the main equality F * A = U, from which it follows that +* A'* F' = U', we have: +* +* A'* x = b => A'* F'* inv(F') * x = b => +* +* U'* inv(F') * x = b => inv(F') * x = inv(U') * b => +* +* x = F' * inv(U') * b. +* +* On entry the array x should contain elements of the right-hand side +* vector b in locations x[1], ..., x[n], where n is the order of the +* matrix A. On exit this array will contain elements of the solution +* vector x in the same locations. +* +* The working array w should have at least 1+n elements (0-th element +* is not used). */ + +void ifu_at_solve(IFU *ifu, double x[/*1+n*/], double w[/*1+n*/]) +{ /* non-optimized version */ + int n_max = ifu->n_max; + int n = ifu->n; + double *f_ = ifu->f; + double *u_ = ifu->u; + int i, j; + double t; +# define f(i,j) f_[(i)*n_max+(j)] +# define u(i,j) u_[(i)*n_max+(j)] + xassert(0 <= n && n <= n_max); + /* adjust indexing */ + x++, w++; + /* y := inv(U') * b */ + for (i = 0; i < n; i++) + { t = (x[i] /= u(i,i)); + for (j = i+1; j < n; j++) + x[j] -= u(i,j) * t; + } + /* x := F'* y */ + for (j = 0; j < n; j++) + { /* x[j] := (j-th column of F) * y */ + t = 0.0; + for (i = 0; i < n; i++) + t += f(i,j) * x[i]; + w[j] = t; + } + memcpy(x, w, n * sizeof(double)); +# undef f +# undef u + return; +} + +/* eof */ |