diff options
Diffstat (limited to 'glpk-5.0/src/bflib/btfint.c')
-rw-r--r-- | glpk-5.0/src/bflib/btfint.c | 405 |
1 files changed, 405 insertions, 0 deletions
diff --git a/glpk-5.0/src/bflib/btfint.c b/glpk-5.0/src/bflib/btfint.c new file mode 100644 index 0000000..da23aa0 --- /dev/null +++ b/glpk-5.0/src/bflib/btfint.c @@ -0,0 +1,405 @@ +/* btfint.c (interface to BT-factorization) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* Copyright (C) 2013-2014 Free Software Foundation, Inc. +* Written by Andrew Makhorin <mao@gnu.org>. +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. +***********************************************************************/ + +#include "env.h" +#include "btfint.h" + +BTFINT *btfint_create(void) +{ /* create interface to BT-factorization */ + BTFINT *fi; + fi = talloc(1, BTFINT); + fi->n_max = 0; + fi->valid = 0; + fi->sva = NULL; + fi->btf = NULL; + fi->sgf = NULL; + fi->sva_n_max = fi->sva_size = 0; + fi->delta_n0 = fi->delta_n = 0; + fi->sgf_piv_tol = 0.10; + fi->sgf_piv_lim = 4; + fi->sgf_suhl = 1; + fi->sgf_eps_tol = DBL_EPSILON; + return fi; +} + +static void factorize_triv(BTFINT *fi, int k, int (*col)(void *info, + int j, int ind[], double val[]), void *info) +{ /* compute LU-factorization of diagonal block A~[k,k] and store + * corresponding columns of matrix A except elements of A~[k,k] + * (trivial case when the block has unity size) */ + SVA *sva = fi->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + BTF *btf = fi->btf; + int *pp_inv = btf->pp_inv; + int *qq_ind = btf->qq_ind; + int *beg = btf->beg; + int ac_ref = btf->ac_ref; + int *ac_ptr = &sva->ptr[ac_ref-1]; + int *ac_len = &sva->len[ac_ref-1]; + SGF *sgf = fi->sgf; + int *ind = (int *)sgf->vr_max; /* working array */ + double *val = sgf->work; /* working array */ + int i, j, t, len, ptr, beg_k; + /* diagonal block A~[k,k] has the only element in matrix A~, + * which is a~[beg[k],beg[k]] = a[i,j] */ + beg_k = beg[k]; + i = pp_inv[beg_k]; + j = qq_ind[beg_k]; + /* get j-th column of A */ + len = col(info, j, ind, val); + /* find element a[i,j] = a~[beg[k],beg[k]] in j-th column */ + for (t = 1; t <= len; t++) + { if (ind[t] == i) + break; + } + xassert(t <= len); + /* compute LU-factorization of diagonal block A~[k,k], where + * F = (1), V = (a[i,j]), P = Q = (1) (see the module LUF) */ +#if 1 /* FIXME */ + xassert(val[t] != 0.0); +#endif + btf->vr_piv[beg_k] = val[t]; + btf->p1_ind[beg_k] = btf->p1_inv[beg_k] = 1; + btf->q1_ind[beg_k] = btf->q1_inv[beg_k] = 1; + /* remove element a[i,j] = a~[beg[k],beg[k]] from j-th column */ + memmove(&ind[t], &ind[t+1], (len-t) * sizeof(int)); + memmove(&val[t], &val[t+1], (len-t) * sizeof(double)); + len--; + /* and store resulting j-th column of A into BTF */ + if (len > 0) + { /* reserve locations for j-th column of A */ + if (sva->r_ptr - sva->m_ptr < len) + { sva_more_space(sva, len); + sv_ind = sva->ind; + sv_val = sva->val; + } + sva_reserve_cap(sva, ac_ref+(j-1), len); + /* store j-th column of A (except elements of A~[k,k]) */ + ptr = ac_ptr[j]; + memcpy(&sv_ind[ptr], &ind[1], len * sizeof(int)); + memcpy(&sv_val[ptr], &val[1], len * sizeof(double)); + ac_len[j] = len; + } + return; +} + +static int factorize_block(BTFINT *fi, int k, int (*col)(void *info, + int j, int ind[], double val[]), void *info) +{ /* compute LU-factorization of diagonal block A~[k,k] and store + * corresponding columns of matrix A except elements of A~[k,k] + * (general case) */ + SVA *sva = fi->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + BTF *btf = fi->btf; + int *pp_ind = btf->pp_ind; + int *qq_ind = btf->qq_ind; + int *beg = btf->beg; + int ac_ref = btf->ac_ref; + int *ac_ptr = &sva->ptr[ac_ref-1]; + int *ac_len = &sva->len[ac_ref-1]; + SGF *sgf = fi->sgf; + int *ind = (int *)sgf->vr_max; /* working array */ + double *val = sgf->work; /* working array */ + LUF luf; + int *vc_ptr, *vc_len, *vc_cap; + int i, ii, j, jj, t, len, cnt, ptr, beg_k; + /* construct fake LUF for LU-factorization of A~[k,k] */ + sgf->luf = &luf; + luf.n = beg[k+1] - (beg_k = beg[k]); + luf.sva = sva; + luf.fr_ref = btf->fr_ref + (beg_k-1); + luf.fc_ref = btf->fc_ref + (beg_k-1); + luf.vr_ref = btf->vr_ref + (beg_k-1); + luf.vr_piv = btf->vr_piv + (beg_k-1); + luf.vc_ref = btf->vc_ref + (beg_k-1); + luf.pp_ind = btf->p1_ind + (beg_k-1); + luf.pp_inv = btf->p1_inv + (beg_k-1); + luf.qq_ind = btf->q1_ind + (beg_k-1); + luf.qq_inv = btf->q1_inv + (beg_k-1); + /* process columns of k-th block of matrix A~ */ + vc_ptr = &sva->ptr[luf.vc_ref-1]; + vc_len = &sva->len[luf.vc_ref-1]; + vc_cap = &sva->cap[luf.vc_ref-1]; + for (jj = 1; jj <= luf.n; jj++) + { /* jj-th column of A~ = j-th column of A */ + j = qq_ind[jj + (beg_k-1)]; + /* get j-th column of A */ + len = col(info, j, ind, val); + /* move elements of diagonal block A~[k,k] to the beginning of + * the column list */ + cnt = 0; + for (t = 1; t <= len; t++) + { /* i = row index of element a[i,j] */ + i = ind[t]; + /* i-th row of A = ii-th row of A~ */ + ii = pp_ind[i]; + if (ii >= beg_k) + { /* a~[ii,jj] = a[i,j] is in diagonal block A~[k,k] */ + double temp; + cnt++; + ind[t] = ind[cnt]; + ind[cnt] = ii - (beg_k-1); /* local index */ + temp = val[t], val[t] = val[cnt], val[cnt] = temp; + } + } + /* first cnt elements in the column list give jj-th column of + * diagonal block A~[k,k], which is initial matrix V in LUF */ + /* enlarge capacity of jj-th column of V = A~[k,k] */ + if (vc_cap[jj] < cnt) + { if (sva->r_ptr - sva->m_ptr < cnt) + { sva_more_space(sva, cnt); + sv_ind = sva->ind; + sv_val = sva->val; + } + sva_enlarge_cap(sva, luf.vc_ref+(jj-1), cnt, 0); + } + /* store jj-th column of V = A~[k,k] */ + ptr = vc_ptr[jj]; + memcpy(&sv_ind[ptr], &ind[1], cnt * sizeof(int)); + memcpy(&sv_val[ptr], &val[1], cnt * sizeof(double)); + vc_len[jj] = cnt; + /* other (len-cnt) elements in the column list are stored in + * j-th column of the original matrix A */ + len -= cnt; + if (len > 0) + { /* reserve locations for j-th column of A */ + if (sva->r_ptr - sva->m_ptr < len) + { sva_more_space(sva, len); + sv_ind = sva->ind; + sv_val = sva->val; + } + sva_reserve_cap(sva, ac_ref-1+j, len); + /* store j-th column of A (except elements of A~[k,k]) */ + ptr = ac_ptr[j]; + memcpy(&sv_ind[ptr], &ind[cnt+1], len * sizeof(int)); + memcpy(&sv_val[ptr], &val[cnt+1], len * sizeof(double)); + ac_len[j] = len; + } + } + /* compute LU-factorization of diagonal block A~[k,k]; may note + * that A~[k,k] is irreducible (strongly connected), so singleton + * phase will have no effect */ + k = sgf_factorize(sgf, 0 /* disable singleton phase */); + /* now left (dynamic) part of SVA should be empty (wichtig!) */ + xassert(sva->m_ptr == 1); + return k; +} + +int btfint_factorize(BTFINT *fi, int n, int (*col)(void *info, int j, + int ind[], double val[]), void *info) +{ /* compute BT-factorization of specified matrix A */ + SVA *sva; + BTF *btf; + SGF *sgf; + int k, rank; + xassert(n > 0); + fi->valid = 0; + /* create sparse vector area (SVA), if necessary */ + sva = fi->sva; + if (sva == NULL) + { int sva_n_max = fi->sva_n_max; + int sva_size = fi->sva_size; + if (sva_n_max == 0) + sva_n_max = 6 * n; + if (sva_size == 0) + sva_size = 10 * n; + sva = fi->sva = sva_create_area(sva_n_max, sva_size); + } + /* allocate/reallocate underlying objects, if necessary */ + if (fi->n_max < n) + { int n_max = fi->n_max; + if (n_max == 0) + n_max = fi->n_max = n + fi->delta_n0; + else + n_max = fi->n_max = n + fi->delta_n; + xassert(n_max >= n); + /* allocate/reallocate block triangular factorization (BTF) */ + btf = fi->btf; + if (btf == NULL) + { btf = fi->btf = talloc(1, BTF); + memset(btf, 0, sizeof(BTF)); + btf->sva = sva; + } + else + { tfree(btf->pp_ind); + tfree(btf->pp_inv); + tfree(btf->qq_ind); + tfree(btf->qq_inv); + tfree(btf->beg); + tfree(btf->vr_piv); + tfree(btf->p1_ind); + tfree(btf->p1_inv); + tfree(btf->q1_ind); + tfree(btf->q1_inv); + } + btf->pp_ind = talloc(1+n_max, int); + btf->pp_inv = talloc(1+n_max, int); + btf->qq_ind = talloc(1+n_max, int); + btf->qq_inv = talloc(1+n_max, int); + btf->beg = talloc(1+n_max+1, int); + btf->vr_piv = talloc(1+n_max, double); + btf->p1_ind = talloc(1+n_max, int); + btf->p1_inv = talloc(1+n_max, int); + btf->q1_ind = talloc(1+n_max, int); + btf->q1_inv = talloc(1+n_max, int); + /* allocate/reallocate factorizer workspace (SGF) */ + /* (note that for SGF we could use the size of largest block + * rather than n_max) */ + sgf = fi->sgf; + sgf = fi->sgf; + if (sgf == NULL) + { sgf = fi->sgf = talloc(1, SGF); + memset(sgf, 0, sizeof(SGF)); + } + else + { tfree(sgf->rs_head); + tfree(sgf->rs_prev); + tfree(sgf->rs_next); + tfree(sgf->cs_head); + tfree(sgf->cs_prev); + tfree(sgf->cs_next); + tfree(sgf->vr_max); + tfree(sgf->flag); + tfree(sgf->work); + } + sgf->rs_head = talloc(1+n_max, int); + sgf->rs_prev = talloc(1+n_max, int); + sgf->rs_next = talloc(1+n_max, int); + sgf->cs_head = talloc(1+n_max, int); + sgf->cs_prev = talloc(1+n_max, int); + sgf->cs_next = talloc(1+n_max, int); + sgf->vr_max = talloc(1+n_max, double); + sgf->flag = talloc(1+n_max, char); + sgf->work = talloc(1+n_max, double); + } + btf = fi->btf; + btf->n = n; + sgf = fi->sgf; +#if 1 /* FIXME */ + /* initialize SVA */ + sva->n = 0; + sva->m_ptr = 1; + sva->r_ptr = sva->size + 1; + sva->head = sva->tail = 0; +#endif + /* store pattern of original matrix A in column-wise format */ + btf->ac_ref = sva_alloc_vecs(btf->sva, btf->n); + btf_store_a_cols(btf, col, info, btf->pp_ind, btf->vr_piv); +#ifdef GLP_DEBUG + sva_check_area(sva); +#endif + /* analyze pattern of original matrix A and determine permutation + * matrices P and Q such that A = P * A~* Q, where A~ is an upper + * block triangular matrix */ + rank = btf_make_blocks(btf); + if (rank != n) + { /* original matrix A is structurally singular */ + return 1; + } +#ifdef GLP_DEBUG + btf_check_blocks(btf); +#endif +#if 1 /* FIXME */ + /* initialize SVA */ + sva->n = 0; + sva->m_ptr = 1; + sva->r_ptr = sva->size + 1; + sva->head = sva->tail = 0; +#endif + /* allocate sparse vectors in SVA */ + btf->ar_ref = sva_alloc_vecs(btf->sva, btf->n); + btf->ac_ref = sva_alloc_vecs(btf->sva, btf->n); + btf->fr_ref = sva_alloc_vecs(btf->sva, btf->n); + btf->fc_ref = sva_alloc_vecs(btf->sva, btf->n); + btf->vr_ref = sva_alloc_vecs(btf->sva, btf->n); + btf->vc_ref = sva_alloc_vecs(btf->sva, btf->n); + /* setup factorizer control parameters */ + sgf->updat = 0; /* wichtig! */ + sgf->piv_tol = fi->sgf_piv_tol; + sgf->piv_lim = fi->sgf_piv_lim; + sgf->suhl = fi->sgf_suhl; + sgf->eps_tol = fi->sgf_eps_tol; + /* compute LU-factorizations of diagonal blocks A~[k,k] and also + * store corresponding columns of matrix A except elements of all + * blocks A~[k,k] */ + for (k = 1; k <= btf->num; k++) + { if (btf->beg[k+1] - btf->beg[k] == 1) + { /* trivial case (A~[k,k] has unity order) */ + factorize_triv(fi, k, col, info); + } + else + { /* general case */ + if (factorize_block(fi, k, col, info) != 0) + return 2; /* factorization of A~[k,k] failed */ + } + } +#ifdef GLP_DEBUG + sva_check_area(sva); +#endif + /* build row-wise representation of matrix A */ + btf_build_a_rows(fi->btf, fi->sgf->rs_head); +#ifdef GLP_DEBUG + sva_check_area(sva); +#endif + /* BT-factorization has been successfully computed */ + fi->valid = 1; + return 0; +} + +void btfint_delete(BTFINT *fi) +{ /* delete interface to BT-factorization */ + SVA *sva = fi->sva; + BTF *btf = fi->btf; + SGF *sgf = fi->sgf; + if (sva != NULL) + sva_delete_area(sva); + if (btf != NULL) + { tfree(btf->pp_ind); + tfree(btf->pp_inv); + tfree(btf->qq_ind); + tfree(btf->qq_inv); + tfree(btf->beg); + tfree(btf->vr_piv); + tfree(btf->p1_ind); + tfree(btf->p1_inv); + tfree(btf->q1_ind); + tfree(btf->q1_inv); + tfree(btf); + } + if (sgf != NULL) + { tfree(sgf->rs_head); + tfree(sgf->rs_prev); + tfree(sgf->rs_next); + tfree(sgf->cs_head); + tfree(sgf->cs_prev); + tfree(sgf->cs_next); + tfree(sgf->vr_max); + tfree(sgf->flag); + tfree(sgf->work); + tfree(sgf); + } + tfree(fi); + return; +} + +/* eof */ |