diff options
Diffstat (limited to 'glpk-5.0/src/bflib/btf.c')
-rw-r--r-- | glpk-5.0/src/bflib/btf.c | 567 |
1 files changed, 567 insertions, 0 deletions
diff --git a/glpk-5.0/src/bflib/btf.c b/glpk-5.0/src/bflib/btf.c new file mode 100644 index 0000000..d0a7905 --- /dev/null +++ b/glpk-5.0/src/bflib/btf.c @@ -0,0 +1,567 @@ +/* btf.c (sparse block triangular LU-factorization) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* Copyright (C) 2013-2014 Free Software Foundation, Inc. +* Written by Andrew Makhorin <mao@gnu.org>. +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. +***********************************************************************/ + +#include "btf.h" +#include "env.h" +#include "luf.h" +#include "mc13d.h" +#include "mc21a.h" + +/*********************************************************************** +* btf_store_a_cols - store pattern of matrix A in column-wise format +* +* This routine stores the pattern (that is, only indices of non-zero +* elements) of the original matrix A in column-wise format. +* +* On exit the routine returns the number of non-zeros in matrix A. */ + +int btf_store_a_cols(BTF *btf, int (*col)(void *info, int j, int ind[], + double val[]), void *info, int ind[], double val[]) +{ int n = btf->n; + SVA *sva = btf->sva; + int *sv_ind = sva->ind; + int ac_ref = btf->ac_ref; + int *ac_ptr = &sva->ptr[ac_ref-1]; + int *ac_len = &sva->len[ac_ref-1]; + int j, len, ptr, nnz; + nnz = 0; + for (j = 1; j <= n; j++) + { /* get j-th column */ + len = col(info, j, ind, val); + xassert(0 <= len && len <= n); + /* reserve locations for j-th column */ + if (len > 0) + { if (sva->r_ptr - sva->m_ptr < len) + { sva_more_space(sva, len); + sv_ind = sva->ind; + } + sva_reserve_cap(sva, ac_ref+(j-1), len); + } + /* store pattern of j-th column */ + ptr = ac_ptr[j]; + memcpy(&sv_ind[ptr], &ind[1], len * sizeof(int)); + ac_len[j] = len; + nnz += len; + } + return nnz; +} + +/*********************************************************************** +* btf_make_blocks - permutations to block triangular form +* +* This routine analyzes the pattern of the original matrix A and +* determines permutation matrices P and Q such that A = P * A~* Q, +* where A~ is an upper block triangular matrix. +* +* On exit the routine returns symbolic rank of matrix A. */ + +int btf_make_blocks(BTF *btf) +{ int n = btf->n; + SVA *sva = btf->sva; + int *sv_ind = sva->ind; + int *pp_ind = btf->pp_ind; + int *pp_inv = btf->pp_inv; + int *qq_ind = btf->qq_ind; + int *qq_inv = btf->qq_inv; + int *beg = btf->beg; + int ac_ref = btf->ac_ref; + int *ac_ptr = &sva->ptr[ac_ref-1]; + int *ac_len = &sva->len[ac_ref-1]; + int i, j, rank, *iperm, *pr, *arp, *cv, *out, *ip, *lenr, *lowl, + *numb, *prev; + /* determine column permutation matrix M such that matrix A * M + * has zero-free diagonal */ + iperm = qq_inv; /* matrix M */ + pr = btf->p1_ind; /* working array */ + arp = btf->p1_inv; /* working array */ + cv = btf->q1_ind; /* working array */ + out = btf->q1_inv; /* working array */ + rank = mc21a(n, sv_ind, ac_ptr, ac_len, iperm, pr, arp, cv, out); + xassert(0 <= rank && rank <= n); + if (rank < n) + { /* A is structurally singular (rank is its symbolic rank) */ + goto done; + } + /* build pattern of matrix A * M */ + ip = pp_ind; /* working array */ + lenr = qq_ind; /* working array */ + for (j = 1; j <= n; j++) + { ip[j] = ac_ptr[iperm[j]]; + lenr[j] = ac_len[iperm[j]]; + } + /* determine symmetric permutation matrix S such that matrix + * S * (A * M) * S' = A~ is upper block triangular */ + lowl = btf->p1_ind; /* working array */ + numb = btf->p1_inv; /* working array */ + prev = btf->q1_ind; /* working array */ + btf->num = + mc13d(n, sv_ind, ip, lenr, pp_inv, beg, lowl, numb, prev); + xassert(beg[1] == 1); + beg[btf->num+1] = n+1; + /* A * M = S' * A~ * S ==> A = S' * A~ * (S * M') */ + /* determine permutation matrix P = S' */ + for (j = 1; j <= n; j++) + pp_ind[pp_inv[j]] = j; + /* determine permutation matrix Q = S * M' = P' * M' */ + for (i = 1; i <= n; i++) + qq_ind[i] = iperm[pp_inv[i]]; + for (i = 1; i <= n; i++) + qq_inv[qq_ind[i]] = i; +done: return rank; +} + +/*********************************************************************** +* btf_check_blocks - check structure of matrix A~ +* +* This routine checks that structure of upper block triangular matrix +* A~ is correct. +* +* NOTE: For testing/debugging only. */ + +void btf_check_blocks(BTF *btf) +{ int n = btf->n; + SVA *sva = btf->sva; + int *sv_ind = sva->ind; + int *pp_ind = btf->pp_ind; + int *pp_inv = btf->pp_inv; + int *qq_ind = btf->qq_ind; + int *qq_inv = btf->qq_inv; + int num = btf->num; + int *beg = btf->beg; + int ac_ref = btf->ac_ref; + int *ac_ptr = &sva->ptr[ac_ref-1]; + int *ac_len = &sva->len[ac_ref-1]; + int i, ii, j, jj, k, size, ptr, end, diag; + xassert(n > 0); + /* check permutation matrices P and Q */ + for (k = 1; k <= n; k++) + { xassert(1 <= pp_ind[k] && pp_ind[k] <= n); + xassert(pp_inv[pp_ind[k]] == k); + xassert(1 <= qq_ind[k] && qq_ind[k] <= n); + xassert(qq_inv[qq_ind[k]] == k); + } + /* check that matrix A~ is upper block triangular with non-zero + * diagonal */ + xassert(1 <= num && num <= n); + xassert(beg[1] == 1); + xassert(beg[num+1] == n+1); + /* walk thru blocks of A~ */ + for (k = 1; k <= num; k++) + { /* determine size of k-th block */ + size = beg[k+1] - beg[k]; + xassert(size >= 1); + /* walk thru columns of k-th block */ + for (jj = beg[k]; jj < beg[k+1]; jj++) + { diag = 0; + /* jj-th column of A~ = j-th column of A */ + j = qq_ind[jj]; + /* walk thru elements of j-th column of A */ + ptr = ac_ptr[j]; + end = ptr + ac_len[j]; + for (; ptr < end; ptr++) + { /* determine row index of a[i,j] */ + i = sv_ind[ptr]; + /* i-th row of A = ii-th row of A~ */ + ii = pp_ind[i]; + /* a~[ii,jj] should not be below k-th block */ + xassert(ii < beg[k+1]); + if (ii == jj) + { /* non-zero diagonal element of A~ encountered */ + diag = 1; + } + } + xassert(diag); + } + } + return; +} + +/*********************************************************************** +* btf_build_a_rows - build matrix A in row-wise format +* +* This routine builds the row-wise representation of matrix A in the +* right part of SVA using its column-wise representation. +* +* The working array len should have at least 1+n elements (len[0] is +* not used). */ + +void btf_build_a_rows(BTF *btf, int len[/*1+n*/]) +{ int n = btf->n; + SVA *sva = btf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int ar_ref = btf->ar_ref; + int *ar_ptr = &sva->ptr[ar_ref-1]; + int *ar_len = &sva->len[ar_ref-1]; + int ac_ref = btf->ac_ref; + int *ac_ptr = &sva->ptr[ac_ref-1]; + int *ac_len = &sva->len[ac_ref-1]; + int i, j, end, nnz, ptr, ptr1; + /* calculate the number of non-zeros in each row of matrix A and + * the total number of non-zeros */ + nnz = 0; + for (i = 1; i <= n; i++) + len[i] = 0; + for (j = 1; j <= n; j++) + { nnz += ac_len[j]; + for (end = (ptr = ac_ptr[j]) + ac_len[j]; ptr < end; ptr++) + len[sv_ind[ptr]]++; + } + /* we need at least nnz free locations in SVA */ + if (sva->r_ptr - sva->m_ptr < nnz) + { sva_more_space(sva, nnz); + sv_ind = sva->ind; + sv_val = sva->val; + } + /* reserve locations for rows of matrix A */ + for (i = 1; i <= n; i++) + { if (len[i] > 0) + sva_reserve_cap(sva, ar_ref-1+i, len[i]); + ar_len[i] = len[i]; + } + /* walk thru columns of matrix A and build its rows */ + for (j = 1; j <= n; j++) + { for (end = (ptr = ac_ptr[j]) + ac_len[j]; ptr < end; ptr++) + { i = sv_ind[ptr]; + sv_ind[ptr1 = ar_ptr[i] + (--len[i])] = j; + sv_val[ptr1] = sv_val[ptr]; + } + } + return; +} + +/*********************************************************************** +* btf_a_solve - solve system A * x = b +* +* This routine solves the system A * x = b, where A is the original +* matrix. +* +* On entry the array b should contain elements of the right-hand size +* vector b in locations b[1], ..., b[n], where n is the order of the +* matrix A. On exit the array x will contain elements of the solution +* vector in locations x[1], ..., x[n]. Note that the array b will be +* clobbered on exit. +* +* The routine also uses locations [1], ..., [max_size] of two working +* arrays w1 and w2, where max_size is the maximal size of diagonal +* blocks in BT-factorization (max_size <= n). */ + +void btf_a_solve(BTF *btf, double b[/*1+n*/], double x[/*1+n*/], + double w1[/*1+n*/], double w2[/*1+n*/]) +{ SVA *sva = btf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int *pp_inv = btf->pp_inv; + int *qq_ind = btf->qq_ind; + int num = btf->num; + int *beg = btf->beg; + int ac_ref = btf->ac_ref; + int *ac_ptr = &sva->ptr[ac_ref-1]; + int *ac_len = &sva->len[ac_ref-1]; + double *bb = w1; + double *xx = w2; + LUF luf; + int i, j, jj, k, beg_k, flag; + double t; + for (k = num; k >= 1; k--) + { /* determine order of diagonal block A~[k,k] */ + luf.n = beg[k+1] - (beg_k = beg[k]); + if (luf.n == 1) + { /* trivial case */ + /* solve system A~[k,k] * X[k] = B[k] */ + t = x[qq_ind[beg_k]] = + b[pp_inv[beg_k]] / btf->vr_piv[beg_k]; + /* substitute X[k] into other equations */ + if (t != 0.0) + { int ptr = ac_ptr[qq_ind[beg_k]]; + int end = ptr + ac_len[qq_ind[beg_k]]; + for (; ptr < end; ptr++) + b[sv_ind[ptr]] -= sv_val[ptr] * t; + } + } + else + { /* general case */ + /* construct B[k] */ + flag = 0; + for (i = 1; i <= luf.n; i++) + { if ((bb[i] = b[pp_inv[i + (beg_k-1)]]) != 0.0) + flag = 1; + } + /* solve system A~[k,k] * X[k] = B[k] */ + if (!flag) + { /* B[k] = 0, so X[k] = 0 */ + for (j = 1; j <= luf.n; j++) + x[qq_ind[j + (beg_k-1)]] = 0.0; + continue; + } + luf.sva = sva; + luf.fr_ref = btf->fr_ref + (beg_k-1); + luf.fc_ref = btf->fc_ref + (beg_k-1); + luf.vr_ref = btf->vr_ref + (beg_k-1); + luf.vr_piv = btf->vr_piv + (beg_k-1); + luf.vc_ref = btf->vc_ref + (beg_k-1); + luf.pp_ind = btf->p1_ind + (beg_k-1); + luf.pp_inv = btf->p1_inv + (beg_k-1); + luf.qq_ind = btf->q1_ind + (beg_k-1); + luf.qq_inv = btf->q1_inv + (beg_k-1); + luf_f_solve(&luf, bb); + luf_v_solve(&luf, bb, xx); + /* store X[k] and substitute it into other equations */ + for (j = 1; j <= luf.n; j++) + { jj = j + (beg_k-1); + t = x[qq_ind[jj]] = xx[j]; + if (t != 0.0) + { int ptr = ac_ptr[qq_ind[jj]]; + int end = ptr + ac_len[qq_ind[jj]]; + for (; ptr < end; ptr++) + b[sv_ind[ptr]] -= sv_val[ptr] * t; + } + } + } + } + return; +} + +/*********************************************************************** +* btf_at_solve - solve system A'* x = b +* +* This routine solves the system A'* x = b, where A' is a matrix +* transposed to the original matrix A. +* +* On entry the array b should contain elements of the right-hand size +* vector b in locations b[1], ..., b[n], where n is the order of the +* matrix A. On exit the array x will contain elements of the solution +* vector in locations x[1], ..., x[n]. Note that the array b will be +* clobbered on exit. +* +* The routine also uses locations [1], ..., [max_size] of two working +* arrays w1 and w2, where max_size is the maximal size of diagonal +* blocks in BT-factorization (max_size <= n). */ + +void btf_at_solve(BTF *btf, double b[/*1+n*/], double x[/*1+n*/], + double w1[/*1+n*/], double w2[/*1+n*/]) +{ SVA *sva = btf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int *pp_inv = btf->pp_inv; + int *qq_ind = btf->qq_ind; + int num = btf->num; + int *beg = btf->beg; + int ar_ref = btf->ar_ref; + int *ar_ptr = &sva->ptr[ar_ref-1]; + int *ar_len = &sva->len[ar_ref-1]; + double *bb = w1; + double *xx = w2; + LUF luf; + int i, j, jj, k, beg_k, flag; + double t; + for (k = 1; k <= num; k++) + { /* determine order of diagonal block A~[k,k] */ + luf.n = beg[k+1] - (beg_k = beg[k]); + if (luf.n == 1) + { /* trivial case */ + /* solve system A~'[k,k] * X[k] = B[k] */ + t = x[pp_inv[beg_k]] = + b[qq_ind[beg_k]] / btf->vr_piv[beg_k]; + /* substitute X[k] into other equations */ + if (t != 0.0) + { int ptr = ar_ptr[pp_inv[beg_k]]; + int end = ptr + ar_len[pp_inv[beg_k]]; + for (; ptr < end; ptr++) + b[sv_ind[ptr]] -= sv_val[ptr] * t; + } + } + else + { /* general case */ + /* construct B[k] */ + flag = 0; + for (i = 1; i <= luf.n; i++) + { if ((bb[i] = b[qq_ind[i + (beg_k-1)]]) != 0.0) + flag = 1; + } + /* solve system A~'[k,k] * X[k] = B[k] */ + if (!flag) + { /* B[k] = 0, so X[k] = 0 */ + for (j = 1; j <= luf.n; j++) + x[pp_inv[j + (beg_k-1)]] = 0.0; + continue; + } + luf.sva = sva; + luf.fr_ref = btf->fr_ref + (beg_k-1); + luf.fc_ref = btf->fc_ref + (beg_k-1); + luf.vr_ref = btf->vr_ref + (beg_k-1); + luf.vr_piv = btf->vr_piv + (beg_k-1); + luf.vc_ref = btf->vc_ref + (beg_k-1); + luf.pp_ind = btf->p1_ind + (beg_k-1); + luf.pp_inv = btf->p1_inv + (beg_k-1); + luf.qq_ind = btf->q1_ind + (beg_k-1); + luf.qq_inv = btf->q1_inv + (beg_k-1); + luf_vt_solve(&luf, bb, xx); + luf_ft_solve(&luf, xx); + /* store X[k] and substitute it into other equations */ + for (j = 1; j <= luf.n; j++) + { jj = j + (beg_k-1); + t = x[pp_inv[jj]] = xx[j]; + if (t != 0.0) + { int ptr = ar_ptr[pp_inv[jj]]; + int end = ptr + ar_len[pp_inv[jj]]; + for (; ptr < end; ptr++) + b[sv_ind[ptr]] -= sv_val[ptr] * t; + } + } + } + } + return; +} + +/*********************************************************************** +* btf_at_solve1 - solve system A'* y = e' to cause growth in y +* +* This routine is a special version of btf_at_solve. It solves the +* system A'* y = e' = e + delta e, where A' is a matrix transposed to +* the original matrix A, e is the specified right-hand side vector, +* and delta e is a vector of +1 and -1 chosen to cause growth in the +* solution vector y. +* +* On entry the array e should contain elements of the right-hand size +* vector e in locations e[1], ..., e[n], where n is the order of the +* matrix A. On exit the array y will contain elements of the solution +* vector in locations y[1], ..., y[n]. Note that the array e will be +* clobbered on exit. +* +* The routine also uses locations [1], ..., [max_size] of two working +* arrays w1 and w2, where max_size is the maximal size of diagonal +* blocks in BT-factorization (max_size <= n). */ + +void btf_at_solve1(BTF *btf, double e[/*1+n*/], double y[/*1+n*/], + double w1[/*1+n*/], double w2[/*1+n*/]) +{ SVA *sva = btf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int *pp_inv = btf->pp_inv; + int *qq_ind = btf->qq_ind; + int num = btf->num; + int *beg = btf->beg; + int ar_ref = btf->ar_ref; + int *ar_ptr = &sva->ptr[ar_ref-1]; + int *ar_len = &sva->len[ar_ref-1]; + double *ee = w1; + double *yy = w2; + LUF luf; + int i, j, jj, k, beg_k, ptr, end; + double e_k, y_k; + for (k = 1; k <= num; k++) + { /* determine order of diagonal block A~[k,k] */ + luf.n = beg[k+1] - (beg_k = beg[k]); + if (luf.n == 1) + { /* trivial case */ + /* determine E'[k] = E[k] + delta E[k] */ + e_k = e[qq_ind[beg_k]]; + e_k = (e_k >= 0.0 ? e_k + 1.0 : e_k - 1.0); + /* solve system A~'[k,k] * Y[k] = E[k] */ + y_k = y[pp_inv[beg_k]] = e_k / btf->vr_piv[beg_k]; + /* substitute Y[k] into other equations */ + ptr = ar_ptr[pp_inv[beg_k]]; + end = ptr + ar_len[pp_inv[beg_k]]; + for (; ptr < end; ptr++) + e[sv_ind[ptr]] -= sv_val[ptr] * y_k; + } + else + { /* general case */ + /* construct E[k] */ + for (i = 1; i <= luf.n; i++) + ee[i] = e[qq_ind[i + (beg_k-1)]]; + /* solve system A~'[k,k] * Y[k] = E[k] + delta E[k] */ + luf.sva = sva; + luf.fr_ref = btf->fr_ref + (beg_k-1); + luf.fc_ref = btf->fc_ref + (beg_k-1); + luf.vr_ref = btf->vr_ref + (beg_k-1); + luf.vr_piv = btf->vr_piv + (beg_k-1); + luf.vc_ref = btf->vc_ref + (beg_k-1); + luf.pp_ind = btf->p1_ind + (beg_k-1); + luf.pp_inv = btf->p1_inv + (beg_k-1); + luf.qq_ind = btf->q1_ind + (beg_k-1); + luf.qq_inv = btf->q1_inv + (beg_k-1); + luf_vt_solve1(&luf, ee, yy); + luf_ft_solve(&luf, yy); + /* store Y[k] and substitute it into other equations */ + for (j = 1; j <= luf.n; j++) + { jj = j + (beg_k-1); + y_k = y[pp_inv[jj]] = yy[j]; + ptr = ar_ptr[pp_inv[jj]]; + end = ptr + ar_len[pp_inv[jj]]; + for (; ptr < end; ptr++) + e[sv_ind[ptr]] -= sv_val[ptr] * y_k; + } + } + } + return; +} + +/*********************************************************************** +* btf_estimate_norm - estimate 1-norm of inv(A) +* +* This routine estimates 1-norm of inv(A) by one step of inverse +* iteration for the small singular vector as described in [1]. This +* involves solving two systems of equations: +* +* A'* y = e, +* +* A * z = y, +* +* where A' is a matrix transposed to A, and e is a vector of +1 and -1 +* chosen to cause growth in y. Then +* +* estimate 1-norm of inv(A) = (1-norm of z) / (1-norm of y) +* +* REFERENCES +* +* 1. G.E.Forsythe, M.A.Malcolm, C.B.Moler. Computer Methods for +* Mathematical Computations. Prentice-Hall, Englewood Cliffs, N.J., +* pp. 30-62 (subroutines DECOMP and SOLVE). */ + +double btf_estimate_norm(BTF *btf, double w1[/*1+n*/], double + w2[/*1+n*/], double w3[/*1+n*/], double w4[/*1+n*/]) +{ int n = btf->n; + double *e = w1; + double *y = w2; + double *z = w1; + int i; + double y_norm, z_norm; + /* compute y = inv(A') * e to cause growth in y */ + for (i = 1; i <= n; i++) + e[i] = 0.0; + btf_at_solve1(btf, e, y, w3, w4); + /* compute 1-norm of y = sum |y[i]| */ + y_norm = 0.0; + for (i = 1; i <= n; i++) + y_norm += (y[i] >= 0.0 ? +y[i] : -y[i]); + /* compute z = inv(A) * y */ + btf_a_solve(btf, y, z, w3, w4); + /* compute 1-norm of z = sum |z[i]| */ + z_norm = 0.0; + for (i = 1; i <= n; i++) + z_norm += (z[i] >= 0.0 ? +z[i] : -z[i]); + /* estimate 1-norm of inv(A) = (1-norm of z) / (1-norm of y) */ + return z_norm / y_norm; +} + +/* eof */ |