diff options
author | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
---|---|---|
committer | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
commit | ef800d4ffafdbde7d7a172ad73bd984b1695c138 (patch) | |
tree | 920cc189130f1e98f252283fce94851443641a6d /glpk-5.0/src/simplex/spxprim.c | |
parent | ec4ae3c2b5cb0e83fb667f14f832ea94f68ef075 (diff) | |
download | oneapi-master.tar.gz oneapi-master.tar.bz2 |
Diffstat (limited to 'glpk-5.0/src/simplex/spxprim.c')
-rw-r--r-- | glpk-5.0/src/simplex/spxprim.c | 2121 |
1 files changed, 2121 insertions, 0 deletions
diff --git a/glpk-5.0/src/simplex/spxprim.c b/glpk-5.0/src/simplex/spxprim.c new file mode 100644 index 0000000..864cadc --- /dev/null +++ b/glpk-5.0/src/simplex/spxprim.c @@ -0,0 +1,2121 @@ +/* spxprim.c */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* Copyright (C) 2015-2017 Free Software Foundation, Inc. +* Written by Andrew Makhorin <mao@gnu.org>. +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. +***********************************************************************/ + +#if 1 /* 18/VII-2017 */ +#define SCALE_Z 1 +#endif + +#include "env.h" +#include "simplex.h" +#include "spxat.h" +#include "spxnt.h" +#include "spxchuzc.h" +#include "spxchuzr.h" +#include "spxprob.h" + +#include "glpk_fpga.h" + + +#define CHECK_ACCURACY 0 +/* (for debugging) */ + +struct csa +{ /* common storage area */ + SPXLP *lp; + /* LP problem data and its (current) basis; this LP has m rows + * and n columns */ + int dir; + /* original optimization direction: + * +1 - minimization + * -1 - maximization */ +#if SCALE_Z + double fz; + /* factor used to scale original objective */ +#endif + double *orig_c; /* double orig_c[1+n]; */ + /* copy of original objective coefficients */ + double *orig_l; /* double orig_l[1+n]; */ + /* copy of original lower bounds */ + double *orig_u; /* double orig_u[1+n]; */ + /* copy of original upper bounds */ + SPXAT *at; + /* mxn-matrix A of constraint coefficients, in sparse row-wise + * format (NULL if not used) */ + SPXNT *nt; + /* mx(n-m)-matrix N composed of non-basic columns of constraint + * matrix A, in sparse row-wise format (NULL if not used) */ + int phase; + /* search phase: + * 0 - not determined yet + * 1 - searching for primal feasible solution + * 2 - searching for optimal solution */ + double *beta; /* double beta[1+m]; */ + /* beta[i] is a primal value of basic variable xB[i] */ + int beta_st; + /* status of the vector beta: + * 0 - undefined + * 1 - just computed + * 2 - updated */ + double *d; /* double d[1+n-m]; */ + /* d[j] is a reduced cost of non-basic variable xN[j] */ + int d_st; + /* status of the vector d: + * 0 - undefined + * 1 - just computed + * 2 - updated */ + SPXSE *se; + /* projected steepest edge and Devex pricing data block (NULL if + * not used) */ + int num; + /* number of eligible non-basic variables */ + int *list; /* int list[1+n-m]; */ + /* list[1], ..., list[num] are indices j of eligible non-basic + * variables xN[j] */ + int q; + /* xN[q] is a non-basic variable chosen to enter the basis */ +#if 0 /* 11/VI-2017 */ + double *tcol; /* double tcol[1+m]; */ +#else + FVS tcol; /* FVS tcol[1:m]; */ +#endif + /* q-th (pivot) column of the simplex table */ +#if 1 /* 23/VI-2017 */ + SPXBP *bp; /* SPXBP bp[1+2*m+1]; */ + /* penalty function break points */ +#endif + int p; + /* xB[p] is a basic variable chosen to leave the basis; + * p = 0 means that no basic variable reaches its bound; + * p < 0 means that non-basic variable xN[q] reaches its opposite + * bound before any basic variable */ + int p_flag; + /* if this flag is set, the active bound of xB[p] in the adjacent + * basis should be set to the upper bound */ +#if 0 /* 11/VI-2017 */ + double *trow; /* double trow[1+n-m]; */ +#else + FVS trow; /* FVS trow[1:n-m]; */ +#endif + /* p-th (pivot) row of the simplex table */ +#if 0 /* 09/VII-2017 */ + double *work; /* double work[1+m]; */ + /* working array */ +#else + FVS work; /* FVS work[1:m]; */ + /* working vector */ +#endif + int p_stat, d_stat; + /* primal and dual solution statuses */ + /*--------------------------------------------------------------*/ + /* control parameters (see struct glp_smcp) */ + int msg_lev; + /* message level */ +#if 0 /* 23/VI-2017 */ + int harris; + /* ratio test technique: + * 0 - textbook ratio test + * 1 - Harris' two pass ratio test */ +#else + int r_test; + /* ratio test technique: + * GLP_RT_STD - textbook ratio test + * GLP_RT_HAR - Harris' two pass ratio test + * GLP_RT_FLIP - long-step ratio test (only for phase I) */ +#endif + double tol_bnd, tol_bnd1; + /* primal feasibility tolerances */ + double tol_dj, tol_dj1; + /* dual feasibility tolerances */ + double tol_piv; + /* pivot tolerance */ + int it_lim; + /* iteration limit */ + int tm_lim; + /* time limit, milliseconds */ + int out_frq; +#if 0 /* 15/VII-2017 */ + /* display output frequency, iterations */ +#else + /* display output frequency, milliseconds */ +#endif + int out_dly; + /* display output delay, milliseconds */ + /*--------------------------------------------------------------*/ + /* working parameters */ + double tm_beg; + /* time value at the beginning of the search */ + int it_beg; + /* simplex iteration count at the beginning of the search */ + int it_cnt; + /* simplex iteration count; it increases by one every time the + * basis changes (including the case when a non-basic variable + * jumps to its opposite bound) */ + int it_dpy; + /* simplex iteration count at most recent display output */ +#if 1 /* 15/VII-2017 */ + double tm_dpy; + /* time value at most recent display output */ +#endif + int inv_cnt; + /* basis factorization count since most recent display output */ +#if 1 /* 01/VII-2017 */ + int degen; + /* count of successive degenerate iterations; this count is used + * to detect stalling */ +#endif +#if 1 /* 23/VI-2017 */ + int ns_cnt, ls_cnt; + /* normal and long-step iteration counts */ +#endif +}; + +/*********************************************************************** +* set_penalty - set penalty function coefficients +* +* This routine sets up objective coefficients of the penalty function, +* which is the sum of primal infeasibilities, as follows: +* +* if beta[i] < l[k] - eps1, set c[k] = -1, +* +* if beta[i] > u[k] + eps2, set c[k] = +1, +* +* otherwise, set c[k] = 0, +* +* where beta[i] is current value of basic variable xB[i] = x[k], l[k] +* and u[k] are original bounds of x[k], and +* +* eps1 = tol + tol1 * |l[k]|, +* +* eps2 = tol + tol1 * |u[k]|. +* +* The routine returns the number of non-zero objective coefficients, +* which is the number of basic variables violating their bounds. Thus, +* if the value returned is zero, the current basis is primal feasible +* within the specified tolerances. */ + +static int set_penalty(struct csa *csa, double tol, double tol1) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + double *beta = csa->beta; + int i, k, count = 0; + double t, eps; + /* reset objective coefficients */ + for (k = 0; k <= n; k++) + c[k] = 0.0; + /* walk thru the list of basic variables */ + for (i = 1; i <= m; i++) + { k = head[i]; /* x[k] = xB[i] */ + /* check lower bound */ + if ((t = l[k]) != -DBL_MAX) + { eps = tol + tol1 * (t >= 0.0 ? +t : -t); + if (beta[i] < t - eps) + { /* lower bound is violated */ + c[k] = -1.0, count++; + } + } + /* check upper bound */ + if ((t = u[k]) != +DBL_MAX) + { eps = tol + tol1 * (t >= 0.0 ? +t : -t); + if (beta[i] > t + eps) + { /* upper bound is violated */ + c[k] = +1.0, count++; + } + } + } + return count; +} + +/*********************************************************************** +* check_feas - check primal feasibility of basic solution +* +* This routine checks if the specified values of all basic variables +* beta = (beta[i]) are within their bounds. +* +* Let l[k] and u[k] be original bounds of basic variable xB[i] = x[k]. +* The actual bounds of x[k] are determined as follows: +* +* 1) if phase = 1 and c[k] < 0, x[k] violates its lower bound, so its +* actual bounds are artificial: -inf < x[k] <= l[k]; +* +* 2) if phase = 1 and c[k] > 0, x[k] violates its upper bound, so its +* actual bounds are artificial: u[k] <= x[k] < +inf; +* +* 3) in all other cases (if phase = 1 and c[k] = 0, or if phase = 2) +* actual bounds are original: l[k] <= x[k] <= u[k]. +* +* The parameters tol and tol1 are bound violation tolerances. The +* actual bounds l'[k] and u'[k] are considered as non-violated within +* the specified tolerance if +* +* l'[k] - eps1 <= beta[i] <= u'[k] + eps2, +* +* where eps1 = tol + tol1 * |l'[k]|, eps2 = tol + tol1 * |u'[k]|. +* +* The routine returns one of the following codes: +* +* 0 - solution is feasible (no actual bounds are violated); +* +* 1 - solution is infeasible, however, only artificial bounds are +* violated (this is possible only if phase = 1); +* +* 2 - solution is infeasible and at least one original bound is +* violated. */ + +static int check_feas(struct csa *csa, int phase, double tol, double + tol1) +{ SPXLP *lp = csa->lp; + int m = lp->m; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + double *beta = csa->beta; + int i, k, orig, ret = 0; + double lk, uk, eps; + xassert(phase == 1 || phase == 2); + /* walk thru the list of basic variables */ + for (i = 1; i <= m; i++) + { k = head[i]; /* x[k] = xB[i] */ + /* determine actual bounds of x[k] */ + if (phase == 1 && c[k] < 0.0) + { /* -inf < x[k] <= l[k] */ + lk = -DBL_MAX, uk = l[k]; + orig = 0; /* artificial bounds */ + } + else if (phase == 1 && c[k] > 0.0) + { /* u[k] <= x[k] < +inf */ + lk = u[k], uk = +DBL_MAX; + orig = 0; /* artificial bounds */ + } + else + { /* l[k] <= x[k] <= u[k] */ + lk = l[k], uk = u[k]; + orig = 1; /* original bounds */ + } + /* check actual lower bound */ + if (lk != -DBL_MAX) + { eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk); + if (beta[i] < lk - eps) + { /* actual lower bound is violated */ + if (orig) + { ret = 2; + break; + } + ret = 1; + } + } + /* check actual upper bound */ + if (uk != +DBL_MAX) + { eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk); + if (beta[i] > uk + eps) + { /* actual upper bound is violated */ + if (orig) + { ret = 2; + break; + } + ret = 1; + } + } + } + return ret; +} + +/*********************************************************************** +* adjust_penalty - adjust penalty function coefficients +* +* On searching for primal feasible solution it may happen that some +* basic variable xB[i] = x[k] has non-zero objective coefficient c[k] +* indicating that xB[i] violates its lower (if c[k] < 0) or upper (if +* c[k] > 0) original bound, but due to primal degenarcy the violation +* is close to zero. +* +* This routine identifies such basic variables and sets objective +* coefficients at these variables to zero that allows avoiding zero- +* step simplex iterations. +* +* The parameters tol and tol1 are bound violation tolerances. The +* original bounds l[k] and u[k] are considered as non-violated within +* the specified tolerance if +* +* l[k] - eps1 <= beta[i] <= u[k] + eps2, +* +* where beta[i] is value of basic variable xB[i] = x[k] in the current +* basis, eps1 = tol + tol1 * |l[k]|, eps2 = tol + tol1 * |u[k]|. +* +* The routine returns the number of objective coefficients which were +* set to zero. */ + +#if 0 +static int adjust_penalty(struct csa *csa, double tol, double tol1) +{ SPXLP *lp = csa->lp; + int m = lp->m; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + double *beta = csa->beta; + int i, k, count = 0; + double t, eps; + xassert(csa->phase == 1); + /* walk thru the list of basic variables */ + for (i = 1; i <= m; i++) + { k = head[i]; /* x[k] = xB[i] */ + if (c[k] < 0.0) + { /* x[k] violates its original lower bound l[k] */ + xassert((t = l[k]) != -DBL_MAX); + eps = tol + tol1 * (t >= 0.0 ? +t : -t); + if (beta[i] >= t - eps) + { /* however, violation is close to zero */ + c[k] = 0.0, count++; + } + } + else if (c[k] > 0.0) + { /* x[k] violates its original upper bound u[k] */ + xassert((t = u[k]) != +DBL_MAX); + eps = tol + tol1 * (t >= 0.0 ? +t : -t); + if (beta[i] <= t + eps) + { /* however, violation is close to zero */ + c[k] = 0.0, count++; + } + } + } + return count; +} +#else +static int adjust_penalty(struct csa *csa, int num, const int + ind[/*1+num*/], double tol, double tol1) +{ SPXLP *lp = csa->lp; + int m = lp->m; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + double *beta = csa->beta; + int i, k, t, cnt = 0; + double lk, uk, eps; + xassert(csa->phase == 1); + /* walk thru the specified list of basic variables */ + for (t = 1; t <= num; t++) + { i = ind[t]; + xassert(1 <= i && i <= m); + k = head[i]; /* x[k] = xB[i] */ + if (c[k] < 0.0) + { /* x[k] violates its original lower bound */ + lk = l[k]; + xassert(lk != -DBL_MAX); + eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk); + if (beta[i] >= lk - eps) + { /* however, violation is close to zero */ + c[k] = 0.0, cnt++; + } + } + else if (c[k] > 0.0) + { /* x[k] violates its original upper bound */ + uk = u[k]; + xassert(uk != +DBL_MAX); + eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk); + if (beta[i] <= uk + eps) + { /* however, violation is close to zero */ + c[k] = 0.0, cnt++; + } + } + } + return cnt; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* err_in_vec - compute maximal relative error between two vectors +* +* This routine computes and returns maximal relative error between +* n-vectors x and y: +* +* err_max = max |x[i] - y[i]| / (1 + |x[i]|). +* +* NOTE: This routine is intended only for debugginig purposes. */ + +static double err_in_vec(int n, const double x[], const double y[]) +{ int i; + double err, err_max; + err_max = 0.0; + for (i = 1; i <= n; i++) + { err = fabs(x[i] - y[i]) / (1.0 + fabs(x[i])); + if (err_max < err) + err_max = err; + } + return err_max; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* err_in_beta - compute maximal relative error in vector beta +* +* This routine computes and returns maximal relative error in vector +* of values of basic variables beta = (beta[i]). +* +* NOTE: This routine is intended only for debugginig purposes. */ + +static double err_in_beta(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + double err, *beta; + beta = talloc(1+m, double); + spx_eval_beta(lp, beta); + err = err_in_vec(m, beta, csa->beta); + tfree(beta); + return err; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* err_in_d - compute maximal relative error in vector d +* +* This routine computes and returns maximal relative error in vector +* of reduced costs of non-basic variables d = (d[j]). +* +* NOTE: This routine is intended only for debugginig purposes. */ + +static double err_in_d(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + int j; + double err, *pi, *d; + pi = talloc(1+m, double); + d = talloc(1+n-m, double); + spx_eval_pi(lp, pi); + for (j = 1; j <= n-m; j++) + d[j] = spx_eval_dj(lp, pi, j); + err = err_in_vec(n-m, d, csa->d); + tfree(pi); + tfree(d); + return err; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* err_in_gamma - compute maximal relative error in vector gamma +* +* This routine computes and returns maximal relative error in vector +* of projected steepest edge weights gamma = (gamma[j]). +* +* NOTE: This routine is intended only for debugginig purposes. */ + +static double err_in_gamma(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + SPXSE *se = csa->se; + int j; + double err, *gamma; + xassert(se != NULL); + gamma = talloc(1+n-m, double); + for (j = 1; j <= n-m; j++) + gamma[j] = spx_eval_gamma_j(lp, se, j); + err = err_in_vec(n-m, gamma, se->gamma); + tfree(gamma); + return err; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* check_accuracy - check accuracy of basic solution components +* +* This routine checks accuracy of current basic solution components. +* +* NOTE: This routine is intended only for debugginig purposes. */ + +static void check_accuracy(struct csa *csa) +{ double e_beta, e_d, e_gamma; + e_beta = err_in_beta(csa); + e_d = err_in_d(csa); + if (csa->se == NULL) + e_gamma = 0.; + else + e_gamma = err_in_gamma(csa); + xprintf("e_beta = %10.3e; e_d = %10.3e; e_gamma = %10.3e\n", + e_beta, e_d, e_gamma); + xassert(e_beta <= 1e-5 && e_d <= 1e-5 && e_gamma <= 1e-3); + return; +} +#endif + +/*********************************************************************** +* choose_pivot - choose xN[q] and xB[p] +* +* Given the list of eligible non-basic variables this routine first +* chooses non-basic variable xN[q]. This choice is always possible, +* because the list is assumed to be non-empty. Then the routine +* computes q-th column T[*,q] of the simplex table T[i,j] and chooses +* basic variable xB[p]. If the pivot T[p,q] is small in magnitude, +* the routine attempts to choose another xN[q] and xB[p] in order to +* avoid badly conditioned adjacent bases. */ + +#if 1 /* 17/III-2016 */ +#define MIN_RATIO 0.0001 + +static int choose_pivot(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *beta = csa->beta; + double *d = csa->d; + SPXSE *se = csa->se; + int *list = csa->list; +#if 0 /* 09/VII-2017 */ + double *tcol = csa->work; +#else + double *tcol = csa->work.vec; +#endif + double tol_piv = csa->tol_piv; + int try, nnn, /*i,*/ p, p_flag, q, t; + double big, /*temp,*/ best_ratio; +#if 1 /* 23/VI-2017 */ + double *c = lp->c; + int *head = lp->head; + SPXBP *bp = csa->bp; + int nbp, t_best, ret, k; + double dz_best; +#endif + xassert(csa->beta_st); + xassert(csa->d_st); +more: /* initial number of eligible non-basic variables */ + nnn = csa->num; + /* nothing has been chosen so far */ + csa->q = 0; + best_ratio = 0.0; +#if 0 /* 23/VI-2017 */ + try = 0; +#else + try = ret = 0; +#endif +try: /* choose non-basic variable xN[q] */ + xassert(nnn > 0); + try++; + if (se == NULL) + { /* Dantzig's rule */ + q = spx_chuzc_std(lp, d, nnn, list); + } + else + { /* projected steepest edge */ + q = spx_chuzc_pse(lp, se, d, nnn, list); + } + xassert(1 <= q && q <= n-m); + /* compute q-th column of the simplex table */ + spx_eval_tcol(lp, q, tcol); +#if 0 + /* big := max(1, |tcol[1]|, ..., |tcol[m]|) */ + big = 1.0; + for (i = 1; i <= m; i++) + { temp = tcol[i]; + if (temp < 0.0) + temp = - temp; + if (big < temp) + big = temp; + } +#else + /* this still puzzles me */ + big = 1.0; +#endif + /* choose basic variable xB[p] */ +#if 1 /* 23/VI-2017 */ + if (csa->phase == 1 && csa->r_test == GLP_RT_FLIP && try <= 2) + { /* long-step ratio test */ + int t, num, num1; + double slope, teta_lim; + /* determine penalty function break points */ + nbp = spx_ls_eval_bp(lp, beta, q, d[q], tcol, tol_piv, bp); + if (nbp < 2) + goto skip; + /* set initial slope */ + slope = - fabs(d[q]); + /* estimate initial teta_lim */ + teta_lim = DBL_MAX; + for (t = 1; t <= nbp; t++) + { if (teta_lim > bp[t].teta) + teta_lim = bp[t].teta; + } + xassert(teta_lim >= 0.0); + if (teta_lim < 1e-3) + teta_lim = 1e-3; + /* nothing has been chosen so far */ + t_best = 0, dz_best = 0.0, num = 0; + /* choose appropriate break point */ + while (num < nbp) + { /* select and process a new portion of break points */ + num1 = spx_ls_select_bp(lp, tcol, nbp, bp, num, &slope, + teta_lim); + for (t = num+1; t <= num1; t++) + { int i = (bp[t].i >= 0 ? bp[t].i : -bp[t].i); + xassert(0 <= i && i <= m); + if (i == 0 || fabs(tcol[i]) / big >= MIN_RATIO) + { if (dz_best > bp[t].dz) + t_best = t, dz_best = bp[t].dz; + } +#if 0 + if (i == 0) + { /* do not consider further break points beyond this + * point, where xN[q] reaches its opposite bound; + * in principle (see spx_ls_eval_bp), this break + * point should be the last one, however, due to + * round-off errors there may be other break points + * with the same teta beyond this one */ + slope = +1.0; + } +#endif + } + if (slope > 0.0) + { /* penalty function starts increasing */ + break; + } + /* penalty function continues decreasing */ + num = num1; + teta_lim += teta_lim; + } + if (dz_best == 0.0) + goto skip; + /* the choice has been made */ + xassert(1 <= t_best && t_best <= num1); + if (t_best == 1) + { /* the very first break point was chosen; it is reasonable + * to use the short-step ratio test */ + goto skip; + } + csa->q = q; + memcpy(&csa->tcol.vec[1], &tcol[1], m * sizeof(double)); + fvs_gather_vec(&csa->tcol, DBL_EPSILON); + if (bp[t_best].i == 0) + { /* xN[q] goes to its opposite bound */ + csa->p = -1; + csa->p_flag = 0; + best_ratio = 1.0; + } + else if (bp[t_best].i > 0) + { /* xB[p] leaves the basis and goes to its lower bound */ + csa->p = + bp[t_best].i; + xassert(1 <= csa->p && csa->p <= m); + csa->p_flag = 0; + best_ratio = fabs(tcol[csa->p]) / big; + } + else + { /* xB[p] leaves the basis and goes to its upper bound */ + csa->p = - bp[t_best].i; + xassert(1 <= csa->p && csa->p <= m); + csa->p_flag = 1; + best_ratio = fabs(tcol[csa->p]) / big; + } +#if 0 + xprintf("num1 = %d; t_best = %d; dz = %g\n", num1, t_best, + bp[t_best].dz); +#endif + ret = 1; + goto done; +skip: ; + } +#endif +#if 0 /* 23/VI-2017 */ + if (!csa->harris) +#else + if (csa->r_test == GLP_RT_STD) +#endif + { /* textbook ratio test */ + p = spx_chuzr_std(lp, csa->phase, beta, q, + d[q] < 0.0 ? +1. : -1., tcol, &p_flag, tol_piv, + .30 * csa->tol_bnd, .30 * csa->tol_bnd1); + } + else + { /* Harris' two-pass ratio test */ + p = spx_chuzr_harris(lp, csa->phase, beta, q, + d[q] < 0.0 ? +1. : -1., tcol, &p_flag , tol_piv, + .50 * csa->tol_bnd, .50 * csa->tol_bnd1); + } + if (p <= 0) + { /* primal unboundedness or special case */ + csa->q = q; +#if 0 /* 11/VI-2017 */ + memcpy(&csa->tcol[1], &tcol[1], m * sizeof(double)); +#else + memcpy(&csa->tcol.vec[1], &tcol[1], m * sizeof(double)); + fvs_gather_vec(&csa->tcol, DBL_EPSILON); +#endif + csa->p = p; + csa->p_flag = p_flag; + best_ratio = 1.0; + goto done; + } + /* either keep previous choice or accept new choice depending on + * which one is better */ + if (best_ratio < fabs(tcol[p]) / big) + { csa->q = q; +#if 0 /* 11/VI-2017 */ + memcpy(&csa->tcol[1], &tcol[1], m * sizeof(double)); +#else + memcpy(&csa->tcol.vec[1], &tcol[1], m * sizeof(double)); + fvs_gather_vec(&csa->tcol, DBL_EPSILON); +#endif + csa->p = p; + csa->p_flag = p_flag; + best_ratio = fabs(tcol[p]) / big; + } + /* check if the current choice is acceptable */ + if (best_ratio >= MIN_RATIO || nnn == 1 || try == 5) + goto done; + /* try to choose other xN[q] and xB[p] */ + /* find xN[q] in the list */ + for (t = 1; t <= nnn; t++) + if (list[t] == q) break; + xassert(t <= nnn); + /* move xN[q] to the end of the list */ + list[t] = list[nnn], list[nnn] = q; + /* and exclude it from consideration */ + nnn--; + /* repeat the choice */ + goto try; +done: /* the choice has been made */ +#if 1 /* FIXME: currently just to avoid badly conditioned basis */ + if (best_ratio < .001 * MIN_RATIO) + { /* looks like this helps */ + if (bfd_get_count(lp->bfd) > 0) + return -1; + /* didn't help; last chance to improve the choice */ + if (tol_piv == csa->tol_piv) + { tol_piv *= 1000.; + goto more; + } + } +#endif +#if 0 /* 23/VI-2017 */ + return 0; +#else /* FIXME */ + if (ret) + { /* invalidate dual basic solution components */ + csa->d_st = 0; + /* change penalty function coefficients at basic variables for + * all break points preceding the chosen one */ + for (t = 1; t < t_best; t++) + { int i = (bp[t].i >= 0 ? bp[t].i : -bp[t].i); + xassert(0 <= i && i <= m); + if (i == 0) + { /* xN[q] crosses its opposite bound */ + xassert(1 <= csa->q && csa->q <= n-m); + k = head[m+csa->q]; + } + else + { /* xB[i] crosses its (lower or upper) bound */ + k = head[i]; /* x[k] = xB[i] */ + } + c[k] += bp[t].dc; + xassert(c[k] == 0.0 || c[k] == +1.0 || c[k] == -1.0); + } + } + return ret; +#endif +} +#endif + +/*********************************************************************** +* play_bounds - play bounds of primal variables +* +* This routine is called after the primal values of basic variables +* beta[i] were updated and the basis was changed to the adjacent one. +* +* It is assumed that before updating all the primal values beta[i] +* were strongly feasible, so in the adjacent basis beta[i] remain +* feasible within a tolerance, i.e. if some beta[i] violates its lower +* or upper bound, the violation is insignificant. +* +* If some beta[i] violates its lower or upper bound, this routine +* changes (perturbs) the bound to remove such violation, i.e. to make +* all beta[i] strongly feasible. Otherwise, if beta[i] has a feasible +* value, this routine attempts to reduce (or remove) perturbation of +* corresponding lower/upper bound keeping strong feasibility. */ + +/* FIXME: what to do if l[k] = u[k]? */ + +/* FIXME: reduce/remove perturbation if x[k] becomes non-basic? */ + +static void play_bounds(struct csa *csa, int all) +{ SPXLP *lp = csa->lp; + int m = lp->m; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + double *orig_l = csa->orig_l; + double *orig_u = csa->orig_u; + double *beta = csa->beta; +#if 0 /* 11/VI-2017 */ + const double *tcol = csa->tcol; /* was used to update beta */ +#else + const double *tcol = csa->tcol.vec; +#endif + int i, k; + xassert(csa->phase == 1 || csa->phase == 2); + /* primal values beta = (beta[i]) should be valid */ + xassert(csa->beta_st); + /* walk thru the list of basic variables xB = (xB[i]) */ + for (i = 1; i <= m; i++) + { if (all || tcol[i] != 0.0) + { /* beta[i] has changed in the adjacent basis */ + k = head[i]; /* x[k] = xB[i] */ + if (csa->phase == 1 && c[k] < 0.0) + { /* -inf < xB[i] <= lB[i] (artificial bounds) */ + if (beta[i] < l[k] - 1e-9) + continue; + /* restore actual bounds */ + c[k] = 0.0; + csa->d_st = 0; /* since c[k] = cB[i] has changed */ + } + if (csa->phase == 1 && c[k] > 0.0) + { /* uB[i] <= xB[i] < +inf (artificial bounds) */ + if (beta[i] > u[k] + 1e-9) + continue; + /* restore actual bounds */ + c[k] = 0.0; + csa->d_st = 0; /* since c[k] = cB[i] has changed */ + } + /* lB[i] <= xB[i] <= uB[i] */ + if (csa->phase == 1) + xassert(c[k] == 0.0); + if (l[k] != -DBL_MAX) + { /* xB[i] has lower bound */ + if (beta[i] < l[k]) + { /* strong feasibility means xB[i] >= lB[i] */ +#if 0 /* 11/VI-2017 */ + l[k] = beta[i]; +#else + l[k] = beta[i] - 1e-9; +#endif + } + else if (l[k] < orig_l[k]) + { /* remove/reduce perturbation of lB[i] */ + if (beta[i] >= orig_l[k]) + l[k] = orig_l[k]; + else + l[k] = beta[i]; + } + } + if (u[k] != +DBL_MAX) + { /* xB[i] has upper bound */ + if (beta[i] > u[k]) + { /* strong feasibility means xB[i] <= uB[i] */ +#if 0 /* 11/VI-2017 */ + u[k] = beta[i]; +#else + u[k] = beta[i] + 1e-9; +#endif + } + else if (u[k] > orig_u[k]) + { /* remove/reduce perturbation of uB[i] */ + if (beta[i] <= orig_u[k]) + u[k] = orig_u[k]; + else + u[k] = beta[i]; + } + } + } + } + return; +} + +static void remove_perturb(struct csa *csa) +{ /* remove perturbation */ + SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + double *orig_l = csa->orig_l; + double *orig_u = csa->orig_u; + int j, k; + /* restore original bounds of variables */ + memcpy(l, orig_l, (1+n) * sizeof(double)); + memcpy(u, orig_u, (1+n) * sizeof(double)); + /* adjust flags of fixed non-basic variables, because in the + * perturbed problem such variables might be changed to double- + * bounded type */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + if (l[k] == u[k]) + flag[j] = 0; + } + /* removing perturbation changes primal solution components */ + csa->phase = csa->beta_st = 0; +#if 1 + if (csa->msg_lev >= GLP_MSG_ALL) + xprintf("Removing LP perturbation [%d]...\n", + csa->it_cnt); +#endif + return; +} + +/*********************************************************************** +* sum_infeas - compute sum of primal infeasibilities +* +* This routine compute the sum of primal infeasibilities, which is the +* current penalty function value. */ + +static double sum_infeas(SPXLP *lp, const double beta[/*1+m*/]) +{ int m = lp->m; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + int i, k; + double sum = 0.0; + for (i = 1; i <= m; i++) + { k = head[i]; /* x[k] = xB[i] */ + if (l[k] != -DBL_MAX && beta[i] < l[k]) + sum += l[k] - beta[i]; + if (u[k] != +DBL_MAX && beta[i] > u[k]) + sum += beta[i] - u[k]; + } + return sum; +} + +/*********************************************************************** +* display - display search progress +* +* This routine displays some information about the search progress +* that includes: +* +* search phase; +* +* number of simplex iterations performed by the solver; +* +* original objective value; +* +* sum of (scaled) primal infeasibilities; +* +* number of infeasibilities (phase I) or non-optimalities (phase II); +* +* number of basic factorizations since last display output. */ + +static void display(struct csa *csa, int spec) +{ int nnn, k; + double obj, sum, *save, *save1; +#if 1 /* 15/VII-2017 */ + double tm_cur; +#endif + /* check if the display output should be skipped */ + if (csa->msg_lev < GLP_MSG_ON) goto skip; +#if 1 /* 15/VII-2017 */ + tm_cur = xtime(); +#endif + if (csa->out_dly > 0 && +#if 0 /* 15/VII-2017 */ + 1000.0 * xdifftime(xtime(), csa->tm_beg) < csa->out_dly) +#else + 1000.0 * xdifftime(tm_cur, csa->tm_beg) < csa->out_dly) +#endif + goto skip; + if (csa->it_cnt == csa->it_dpy) goto skip; +#if 0 /* 15/VII-2017 */ + if (!spec && csa->it_cnt % csa->out_frq != 0) goto skip; +#else + if (!spec && + 1000.0 * xdifftime(tm_cur, csa->tm_dpy) < csa->out_frq) + goto skip; +#endif + /* compute original objective value */ + save = csa->lp->c; + csa->lp->c = csa->orig_c; + obj = csa->dir * spx_eval_obj(csa->lp, csa->beta); + csa->lp->c = save; +#if SCALE_Z + obj *= csa->fz; +#endif + /* compute sum of (scaled) primal infeasibilities */ +#if 1 /* 01/VII-2017 */ + save = csa->lp->l; + save1 = csa->lp->u; + csa->lp->l = csa->orig_l; + csa->lp->u = csa->orig_u; +#endif + sum = sum_infeas(csa->lp, csa->beta); +#if 1 /* 01/VII-2017 */ + csa->lp->l = save; + csa->lp->u = save1; +#endif + /* compute number of infeasibilities/non-optimalities */ + switch (csa->phase) + { case 1: + nnn = 0; + for (k = 1; k <= csa->lp->n; k++) + if (csa->lp->c[k] != 0.0) nnn++; + break; + case 2: + xassert(csa->d_st); + nnn = spx_chuzc_sel(csa->lp, csa->d, csa->tol_dj, + csa->tol_dj1, NULL); + break; + default: + xassert(csa != csa); + } + /* display search progress */ + xprintf("%c%6d: obj = %17.9e inf = %11.3e (%d)", + csa->phase == 2 ? '*' : ' ', csa->it_cnt, obj, sum, nnn); + if (csa->inv_cnt) + { /* number of basis factorizations performed */ + xprintf(" %d", csa->inv_cnt); + csa->inv_cnt = 0; + } +#if 1 /* 23/VI-2017 */ + if (csa->phase == 1 && csa->r_test == GLP_RT_FLIP) + { /*xprintf(" %d,%d", csa->ns_cnt, csa->ls_cnt);*/ + if (csa->ns_cnt + csa->ls_cnt) + xprintf(" %d%%", + (100 * csa->ls_cnt) / (csa->ns_cnt + csa->ls_cnt)); + csa->ns_cnt = csa->ls_cnt = 0; + } +#endif + xprintf("\n"); + csa->it_dpy = csa->it_cnt; +#if 1 /* 15/VII-2017 */ + csa->tm_dpy = tm_cur; +#endif +skip: return; +} + +/*********************************************************************** +* spx_primal - driver to the primal simplex method +* +* This routine is a driver to the two-phase primal simplex method. +* +* On exit this routine returns one of the following codes: +* +* 0 LP instance has been successfully solved. +* +* GLP_EITLIM +* Iteration limit has been exhausted. +* +* GLP_ETMLIM +* Time limit has been exhausted. +* +* GLP_EFAIL +* The solver failed to solve LP instance. */ + +static int primal_simplex(struct csa *csa) +{ /* primal simplex method main logic routine */ + SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *c = lp->c; + int *head = lp->head; + SPXAT *at = csa->at; + SPXNT *nt = csa->nt; + double *beta = csa->beta; + double *d = csa->d; + SPXSE *se = csa->se; + int *list = csa->list; +#if 0 /* 11/VI-2017 */ + double *tcol = csa->tcol; + double *trow = csa->trow; +#endif +#if 0 /* 09/VII-2017 */ + double *pi = csa->work; + double *rho = csa->work; +#else + double *pi = csa->work.vec; + double *rho = csa->work.vec; +#endif + int msg_lev = csa->msg_lev; + double tol_bnd = csa->tol_bnd; + double tol_bnd1 = csa->tol_bnd1; + double tol_dj = csa->tol_dj; + double tol_dj1 = csa->tol_dj1; + int perturb = -1; + /* -1 = perturbation is not used, but enabled + * 0 = perturbation is not used and disabled + * +1 = perturbation is being used */ + int j, refct, ret; +loop: /* main loop starts here */ + /* compute factorization of the basis matrix */ + if (!lp->valid) + { double cond; + ret = spx_factorize(lp); + csa->inv_cnt++; + if (ret != 0) + { if (msg_lev >= GLP_MSG_ERR) + xprintf("Error: unable to factorize the basis matrix (%d" + ")\n", ret); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = GLP_EFAIL; + goto fini; + } + /* check condition of the basis matrix */ + cond = bfd_condest(lp->bfd); + if (cond > 1.0 / DBL_EPSILON) + { if (msg_lev >= GLP_MSG_ERR) + xprintf("Error: basis matrix is singular to working prec" + "ision (cond = %.3g)\n", cond); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = GLP_EFAIL; + goto fini; + } + if (cond > 0.001 / DBL_EPSILON) + { if (msg_lev >= GLP_MSG_ERR) + xprintf("Warning: basis matrix is ill-conditioned (cond " + "= %.3g)\n", cond); + } + /* invalidate basic solution components */ + csa->beta_st = csa->d_st = 0; + } + /* compute values of basic variables beta = (beta[i]) */ + if (!csa->beta_st) + { spx_eval_beta(lp, beta); + csa->beta_st = 1; /* just computed */ + /* determine the search phase, if not determined yet */ + if (!csa->phase) + { if (set_penalty(csa, 0.97 * tol_bnd, 0.97 * tol_bnd1)) + { /* current basic solution is primal infeasible */ + /* start to minimize the sum of infeasibilities */ + csa->phase = 1; + } + else + { /* current basic solution is primal feasible */ + /* start to minimize the original objective function */ + csa->phase = 2; + memcpy(c, csa->orig_c, (1+n) * sizeof(double)); + } + /* working objective coefficients have been changed, so + * invalidate reduced costs */ + csa->d_st = 0; + } + /* make sure that the current basic solution remains primal + * feasible (or pseudo-feasible on phase I) */ + if (perturb <= 0) + { if (check_feas(csa, csa->phase, tol_bnd, tol_bnd1)) + { /* excessive bound violations due to round-off errors */ +#if 1 /* 01/VII-2017 */ + if (perturb < 0) + { if (msg_lev >= GLP_MSG_ALL) + xprintf("Perturbing LP to avoid instability [%d].." + ".\n", csa->it_cnt); + perturb = 1; + goto loop; + } +#endif + if (msg_lev >= GLP_MSG_ERR) + xprintf("Warning: numerical instability (primal simpl" + "ex, phase %s)\n", csa->phase == 1 ? "I" : "II"); + /* restart the search */ + lp->valid = 0; + csa->phase = 0; + goto loop; + } + if (csa->phase == 1) + { int i, cnt; + for (i = 1; i <= m; i++) + csa->tcol.ind[i] = i; + cnt = adjust_penalty(csa, m, csa->tcol.ind, + 0.99 * tol_bnd, 0.99 * tol_bnd1); + if (cnt) + { /*xprintf("*** cnt = %d\n", cnt);*/ + csa->d_st = 0; + } + } + } + else + { /* FIXME */ + play_bounds(csa, 1); + } + } + /* at this point the search phase is determined */ + xassert(csa->phase == 1 || csa->phase == 2); + /* compute reduced costs of non-basic variables d = (d[j]) */ + if (!csa->d_st) + { spx_eval_pi(lp, pi); + for (j = 1; j <= n-m; j++) + d[j] = spx_eval_dj(lp, pi, j); + csa->d_st = 1; /* just computed */ + } + /* reset the reference space, if necessary */ + if (se != NULL && !se->valid) + spx_reset_refsp(lp, se), refct = 1000; + /* at this point the basis factorization and all basic solution + * components are valid */ + xassert(lp->valid && csa->beta_st && csa->d_st); +#if CHECK_ACCURACY + /* check accuracy of current basic solution components (only for + * debugging) */ + check_accuracy(csa); +#endif + /* check if the iteration limit has been exhausted */ + if (csa->it_cnt - csa->it_beg >= csa->it_lim) + { if (perturb > 0) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + } + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + display(csa, 1); + if (msg_lev >= GLP_MSG_ALL) + xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n"); + csa->p_stat = (csa->phase == 2 ? GLP_FEAS : GLP_INFEAS); + csa->d_stat = GLP_UNDEF; /* will be set below */ + ret = GLP_EITLIM; + goto fini; + } + /* check if the time limit has been exhausted */ + if (1000.0 * xdifftime(xtime(), csa->tm_beg) >= csa->tm_lim) + { if (perturb > 0) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + } + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + display(csa, 1); + if (msg_lev >= GLP_MSG_ALL) + xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n"); + csa->p_stat = (csa->phase == 2 ? GLP_FEAS : GLP_INFEAS); + csa->d_stat = GLP_UNDEF; /* will be set below */ + ret = GLP_ETMLIM; + goto fini; + } + /* display the search progress */ + display(csa, 0); + /* select eligible non-basic variables */ + switch (csa->phase) + { case 1: + csa->num = spx_chuzc_sel(lp, d, 1e-8, 0.0, list); + break; + case 2: + csa->num = spx_chuzc_sel(lp, d, tol_dj, tol_dj1, list); + break; + default: + xassert(csa != csa); + } + /* check for optimality */ + if (csa->num == 0) + { if (perturb > 0 && csa->phase == 2) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + } + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + /* current basis is optimal */ + display(csa, 1); + switch (csa->phase) + { case 1: + /* check for primal feasibility */ + if (!check_feas(csa, 2, tol_bnd, tol_bnd1)) + { /* feasible solution found; switch to phase II */ + memcpy(c, csa->orig_c, (1+n) * sizeof(double)); + csa->phase = 2; + csa->d_st = 0; + goto loop; + } + /* no feasible solution exists */ +#if 1 /* 09/VII-2017 */ + /* FIXME: remove perturbation */ +#endif + if (msg_lev >= GLP_MSG_ALL) + xprintf("LP HAS NO PRIMAL FEASIBLE SOLUTION\n"); + csa->p_stat = GLP_NOFEAS; + csa->d_stat = GLP_UNDEF; /* will be set below */ + ret = 0; + goto fini; + case 2: + /* optimal solution found */ + if (msg_lev >= GLP_MSG_ALL) + xprintf("OPTIMAL LP SOLUTION FOUND\n"); + csa->p_stat = csa->d_stat = GLP_FEAS; + ret = 0; + goto fini; + default: + xassert(csa != csa); + } + } + /* choose xN[q] and xB[p] */ +#if 0 /* 23/VI-2017 */ +#if 0 /* 17/III-2016 */ + choose_pivot(csa); +#else + if (choose_pivot(csa) < 0) + { lp->valid = 0; + goto loop; + } +#endif +#else + ret = choose_pivot(csa); + if (ret < 0) + { lp->valid = 0; + goto loop; + } + if (ret == 0) + csa->ns_cnt++; + else + csa->ls_cnt++; +#endif + /* check for unboundedness */ + if (csa->p == 0) + { if (perturb > 0) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + } + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + display(csa, 1); + switch (csa->phase) + { case 1: + /* this should never happen */ + if (msg_lev >= GLP_MSG_ERR) + xprintf("Error: primal simplex failed\n"); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = GLP_EFAIL; + goto fini; + case 2: + /* primal unboundedness detected */ + if (msg_lev >= GLP_MSG_ALL) + xprintf("LP HAS UNBOUNDED PRIMAL SOLUTION\n"); + csa->p_stat = GLP_FEAS; + csa->d_stat = GLP_NOFEAS; + ret = 0; + goto fini; + default: + xassert(csa != csa); + } + } +#if 1 /* 01/VII-2017 */ + /* check for stalling */ + if (csa->p > 0) + { int k; + xassert(1 <= csa->p && csa->p <= m); + k = head[csa->p]; /* x[k] = xB[p] */ + if (lp->l[k] != lp->u[k]) + { if (csa->p_flag) + { /* xB[p] goes to its upper bound */ + xassert(lp->u[k] != +DBL_MAX); + if (fabs(beta[csa->p] - lp->u[k]) >= 1e-6) + { csa->degen = 0; + goto skip1; + } + } + else if (lp->l[k] == -DBL_MAX) + { /* unusual case */ + goto skip1; + } + else + { /* xB[p] goes to its lower bound */ + xassert(lp->l[k] != -DBL_MAX); + if (fabs(beta[csa->p] - lp->l[k]) >= 1e-6) + { csa->degen = 0; + goto skip1; + } + } + /* degenerate iteration has been detected */ + csa->degen++; + if (perturb < 0 && csa->degen >= 200) + { if (msg_lev >= GLP_MSG_ALL) + xprintf("Perturbing LP to avoid stalling [%d]...\n", + csa->it_cnt); + perturb = 1; + } +skip1: ; + } + } +#endif + /* update values of basic variables for adjacent basis */ +#if 0 /* 11/VI-2017 */ + spx_update_beta(lp, beta, csa->p, csa->p_flag, csa->q, tcol); +#else + spx_update_beta_s(lp, beta, csa->p, csa->p_flag, csa->q, + &csa->tcol); +#endif + csa->beta_st = 2; + /* p < 0 means that xN[q] jumps to its opposite bound */ + if (csa->p < 0) + goto skip; + /* xN[q] enters and xB[p] leaves the basis */ + /* compute p-th row of inv(B) */ + spx_eval_rho(lp, csa->p, rho); + /* compute p-th (pivot) row of the simplex table */ +#if 0 /* 11/VI-2017 */ + if (at != NULL) + spx_eval_trow1(lp, at, rho, trow); + else + spx_nt_prod(lp, nt, trow, 1, -1.0, rho); +#else + if (at != NULL) + spx_eval_trow1(lp, at, rho, csa->trow.vec); + else + spx_nt_prod(lp, nt, csa->trow.vec, 1, -1.0, rho); + fvs_gather_vec(&csa->trow, DBL_EPSILON); +#endif + /* FIXME: tcol[p] and trow[q] should be close to each other */ +#if 0 /* 26/V-2017 by cmatraki */ + xassert(trow[csa->q] != 0.0); +#else + if (csa->trow.vec[csa->q] == 0.0) + { if (msg_lev >= GLP_MSG_ERR) + xprintf("Error: trow[q] = 0.0\n"); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = GLP_EFAIL; + goto fini; + } +#endif + /* update reduced costs of non-basic variables for adjacent + * basis */ +#if 1 /* 23/VI-2017 */ + /* dual solution may be invalidated due to long step */ + if (csa->d_st) +#endif +#if 0 /* 11/VI-2017 */ + if (spx_update_d(lp, d, csa->p, csa->q, trow, tcol) <= 1e-9) +#else + if (spx_update_d_s(lp, d, csa->p, csa->q, &csa->trow, &csa->tcol) + <= 1e-9) +#endif + { /* successful updating */ + csa->d_st = 2; + if (csa->phase == 1) + { /* adjust reduced cost of xN[q] in adjacent basis, since + * its penalty coefficient changes (see below) */ + d[csa->q] -= c[head[csa->p]]; + } + } + else + { /* new reduced costs are inaccurate */ + csa->d_st = 0; + } + if (csa->phase == 1) + { /* xB[p] leaves the basis replacing xN[q], so set its penalty + * coefficient to zero */ + c[head[csa->p]] = 0.0; + } + /* update steepest edge weights for adjacent basis, if used */ + if (se != NULL) + { if (refct > 0) +#if 0 /* 11/VI-2017 */ + { if (spx_update_gamma(lp, se, csa->p, csa->q, trow, tcol) + <= 1e-3) +#else /* FIXME: spx_update_gamma_s */ + { if (spx_update_gamma(lp, se, csa->p, csa->q, csa->trow.vec, + csa->tcol.vec) <= 1e-3) +#endif + { /* successful updating */ + refct--; + } + else + { /* new weights are inaccurate; reset reference space */ + se->valid = 0; + } + } + else + { /* too many updates; reset reference space */ + se->valid = 0; + } + } + /* update matrix N for adjacent basis, if used */ + if (nt != NULL) + spx_update_nt(lp, nt, csa->p, csa->q); +skip: /* change current basis header to adjacent one */ + spx_change_basis(lp, csa->p, csa->p_flag, csa->q); + /* and update factorization of the basis matrix */ + if (csa->p > 0) + spx_update_invb(lp, csa->p, head[csa->p]); +#if 1 + if (perturb <= 0) + { if (csa->phase == 1) + { int cnt; + /* adjust penalty function coefficients */ + cnt = adjust_penalty(csa, csa->tcol.nnz, csa->tcol.ind, + 0.99 * tol_bnd, 0.99 * tol_bnd1); + if (cnt) + { /* some coefficients were changed, so invalidate reduced + * costs of non-basic variables */ + /*xprintf("... cnt = %d\n", cnt);*/ + csa->d_st = 0; + } + } + } + else + { /* FIXME */ + play_bounds(csa, 0); + } +#endif + /* simplex iteration complete */ + csa->it_cnt++; + goto loop; +fini: /* restore original objective function */ + memcpy(c, csa->orig_c, (1+n) * sizeof(double)); + /* compute reduced costs of non-basic variables and determine + * solution dual status, if necessary */ + if (csa->p_stat != GLP_UNDEF && csa->d_stat == GLP_UNDEF) + { xassert(ret != GLP_EFAIL); + spx_eval_pi(lp, pi); + for (j = 1; j <= n-m; j++) + d[j] = spx_eval_dj(lp, pi, j); + csa->num = spx_chuzc_sel(lp, d, tol_dj, tol_dj1, NULL); + csa->d_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS); + } + return ret; +} + +int spx_primal_fpga(glp_prob *P, const glp_smcp *parm, void (*funcptr)(void *csa)) +{ /* driver to the primal simplex method */ + struct csa csa_, *csa = &csa_; + SPXLP lp; + SPXAT at; + SPXNT nt; + SPXSE se; + int ret, *map, *daeh; + #if SCALE_Z + int i, j, k; + #endif + /* build working LP and its initial basis */ + memset(csa, 0, sizeof(struct csa)); + csa->lp = &lp; + spx_init_lp(csa->lp, P, parm->excl); + spx_alloc_lp(csa->lp); + map = talloc(1+P->m+P->n, int); + spx_build_lp(csa->lp, P, parm->excl, parm->shift, map); + spx_build_basis(csa->lp, P, map); + switch (P->dir) + { case GLP_MIN: + csa->dir = +1; + break; + case GLP_MAX: + csa->dir = -1; + break; + default: + xassert(P != P); + } + #if SCALE_Z + csa->fz = 0.0; + for (k = 1; k <= csa->lp->n; k++) + { double t = fabs(csa->lp->c[k]); + if (csa->fz < t) + csa->fz = t; + } + if (csa->fz <= 1000.0) + csa->fz = 1.0; + else + csa->fz /= 1000.0; + /*xprintf("csa->fz = %g\n", csa->fz);*/ + for (k = 0; k <= csa->lp->n; k++) + csa->lp->c[k] /= csa->fz; + #endif + csa->orig_c = talloc(1+csa->lp->n, double); + memcpy(csa->orig_c, csa->lp->c, (1+csa->lp->n) * sizeof(double)); + #if 1 /*PERTURB*/ + csa->orig_l = talloc(1+csa->lp->n, double); + memcpy(csa->orig_l, csa->lp->l, (1+csa->lp->n) * sizeof(double)); + csa->orig_u = talloc(1+csa->lp->n, double); + memcpy(csa->orig_u, csa->lp->u, (1+csa->lp->n) * sizeof(double)); + #else + csa->orig_l = csa->orig_u = NULL; + #endif + switch (parm->aorn) + { case GLP_USE_AT: + /* build matrix A in row-wise format */ + csa->at = &at; + csa->nt = NULL; + spx_alloc_at(csa->lp, csa->at); + spx_build_at(csa->lp, csa->at); + break; + case GLP_USE_NT: + /* build matrix N in row-wise format for initial basis */ + csa->at = NULL; + csa->nt = &nt; + spx_alloc_nt(csa->lp, csa->nt); + spx_init_nt(csa->lp, csa->nt); + spx_build_nt(csa->lp, csa->nt); + break; + default: + xassert(parm != parm); + } + /* allocate and initialize working components */ + csa->phase = 0; + csa->beta = talloc(1+csa->lp->m, double); + csa->beta_st = 0; + csa->d = talloc(1+csa->lp->n-csa->lp->m, double); + csa->d_st = 0; + switch (parm->pricing) + { case GLP_PT_STD: + csa->se = NULL; + break; + case GLP_PT_PSE: + csa->se = &se; + spx_alloc_se(csa->lp, csa->se); + break; + default: + xassert(parm != parm); + } + csa->list = talloc(1+csa->lp->n-csa->lp->m, int); + #if 0 /* 11/VI-2017 */ + csa->tcol = talloc(1+csa->lp->m, double); + csa->trow = talloc(1+csa->lp->n-csa->lp->m, double); + #else + fvs_alloc_vec(&csa->tcol, csa->lp->m); + fvs_alloc_vec(&csa->trow, csa->lp->n-csa->lp->m); + #endif + #if 1 /* 23/VI-2017 */ + csa->bp = NULL; + #endif + #if 0 /* 09/VII-2017 */ + csa->work = talloc(1+csa->lp->m, double); + #else + fvs_alloc_vec(&csa->work, csa->lp->m); + #endif + /* initialize control parameters */ + csa->msg_lev = parm->msg_lev; + #if 0 /* 23/VI-2017 */ + switch (parm->r_test) + { case GLP_RT_STD: + csa->harris = 0; + break; + case GLP_RT_HAR: + #if 1 /* 16/III-2016 */ + case GLP_RT_FLIP: + /* FIXME */ + /* currently for primal simplex GLP_RT_FLIP is equivalent + * to GLP_RT_HAR */ + #endif + csa->harris = 1; + break; + default: + xassert(parm != parm); + } + #else + switch (parm->r_test) + { case GLP_RT_STD: + case GLP_RT_HAR: + break; + case GLP_RT_FLIP: + csa->bp = talloc(1+2*csa->lp->m+1, SPXBP); + break; + default: + xassert(parm != parm); + } + csa->r_test = parm->r_test; + #endif + csa->tol_bnd = parm->tol_bnd; + csa->tol_bnd1 = .001 * parm->tol_bnd; + csa->tol_dj = parm->tol_dj; + csa->tol_dj1 = .001 * parm->tol_dj; + csa->tol_piv = parm->tol_piv; + csa->it_lim = parm->it_lim; + csa->tm_lim = parm->tm_lim; + csa->out_frq = parm->out_frq; + csa->out_dly = parm->out_dly; + /* initialize working parameters */ + csa->tm_beg = xtime(); + csa->it_beg = csa->it_cnt = P->it_cnt; + csa->it_dpy = -1; + #if 1 /* 15/VII-2017 */ + csa->tm_dpy = 0.0; + #endif + csa->inv_cnt = 0; + #if 1 /* 01/VII-2017 */ + csa->degen = 0; + #endif + #if 1 /* 23/VI-2017 */ + csa->ns_cnt = csa->ls_cnt = 0; + #endif + /* try to solve working LP */ + //ret = primal_simplex(csa); + // experiment + ret = primal_simplex_fpga(csa, funcptr); + + /* return basis factorization back to problem object */ + P->valid = csa->lp->valid; + P->bfd = csa->lp->bfd; + /* set solution status */ + P->pbs_stat = csa->p_stat; + P->dbs_stat = csa->d_stat; + /* if the solver failed, do not store basis header and basic + * solution components to problem object */ + if (ret == GLP_EFAIL) + goto skip; + /* convert working LP basis to original LP basis and store it to + * problem object */ + daeh = talloc(1+csa->lp->n, int); + spx_store_basis(csa->lp, P, map, daeh); + /* compute simplex multipliers for final basic solution found by + * the solver */ + #if 0 /* 09/VII-2017 */ + spx_eval_pi(csa->lp, csa->work); + #else + spx_eval_pi(csa->lp, csa->work.vec); + #endif + /* convert working LP solution to original LP solution and store + * it into the problem object */ + #if SCALE_Z + for (i = 1; i <= csa->lp->m; i++) + csa->work.vec[i] *= csa->fz; + for (j = 1; j <= csa->lp->n-csa->lp->m; j++) + csa->d[j] *= csa->fz; + #endif + #if 0 /* 09/VII-2017 */ + spx_store_sol(csa->lp, P, SHIFT, map, daeh, csa->beta, csa->work, + csa->d); + #else + spx_store_sol(csa->lp, P, parm->shift, map, daeh, csa->beta, + csa->work.vec, csa->d); + #endif + tfree(daeh); + /* save simplex iteration count */ + P->it_cnt = csa->it_cnt; + /* report auxiliary/structural variable causing unboundedness */ + P->some = 0; + if (csa->p_stat == GLP_FEAS && csa->d_stat == GLP_NOFEAS) + { int k, kk; + /* xN[q] = x[k] causes unboundedness */ + xassert(1 <= csa->q && csa->q <= csa->lp->n - csa->lp->m); + k = csa->lp->head[csa->lp->m + csa->q]; + xassert(1 <= k && k <= csa->lp->n); + /* convert to number of original variable */ + for (kk = 1; kk <= P->m + P->n; kk++) + { if (abs(map[kk]) == k) + { P->some = kk; + break; + } + } + xassert(P->some != 0); + } + skip: /* deallocate working objects and arrays */ + spx_free_lp(csa->lp); + tfree(map); + tfree(csa->orig_c); + #if 1 /*PERTURB*/ + tfree(csa->orig_l); + tfree(csa->orig_u); + #endif + if (csa->at != NULL) + spx_free_at(csa->lp, csa->at); + if (csa->nt != NULL) + spx_free_nt(csa->lp, csa->nt); + tfree(csa->beta); + tfree(csa->d); + if (csa->se != NULL) + spx_free_se(csa->lp, csa->se); + tfree(csa->list); + #if 0 /* 11/VI-2017 */ + tfree(csa->tcol); + tfree(csa->trow); + #else + fvs_free_vec(&csa->tcol); + fvs_free_vec(&csa->trow); + #endif + #if 1 /* 23/VI-2017 */ + if (csa->bp != NULL) + tfree(csa->bp); + #endif + #if 0 /* 09/VII-2017 */ + tfree(csa->work); + #else + fvs_free_vec(&csa->work); + #endif + /* return to calling program */ + return ret; + } + +int spx_primal(glp_prob *P, const glp_smcp *parm) +{ /* driver to the primal simplex method */ + struct csa csa_, *csa = &csa_; + SPXLP lp; + SPXAT at; + SPXNT nt; + SPXSE se; + int ret, *map, *daeh; +#if SCALE_Z + int i, j, k; +#endif + /* build working LP and its initial basis */ + memset(csa, 0, sizeof(struct csa)); + csa->lp = &lp; + spx_init_lp(csa->lp, P, parm->excl); + spx_alloc_lp(csa->lp); + map = talloc(1+P->m+P->n, int); + spx_build_lp(csa->lp, P, parm->excl, parm->shift, map); + spx_build_basis(csa->lp, P, map); + switch (P->dir) + { case GLP_MIN: + csa->dir = +1; + break; + case GLP_MAX: + csa->dir = -1; + break; + default: + xassert(P != P); + } +#if SCALE_Z + csa->fz = 0.0; + for (k = 1; k <= csa->lp->n; k++) + { double t = fabs(csa->lp->c[k]); + if (csa->fz < t) + csa->fz = t; + } + if (csa->fz <= 1000.0) + csa->fz = 1.0; + else + csa->fz /= 1000.0; + /*xprintf("csa->fz = %g\n", csa->fz);*/ + for (k = 0; k <= csa->lp->n; k++) + csa->lp->c[k] /= csa->fz; +#endif + csa->orig_c = talloc(1+csa->lp->n, double); + memcpy(csa->orig_c, csa->lp->c, (1+csa->lp->n) * sizeof(double)); +#if 1 /*PERTURB*/ + csa->orig_l = talloc(1+csa->lp->n, double); + memcpy(csa->orig_l, csa->lp->l, (1+csa->lp->n) * sizeof(double)); + csa->orig_u = talloc(1+csa->lp->n, double); + memcpy(csa->orig_u, csa->lp->u, (1+csa->lp->n) * sizeof(double)); +#else + csa->orig_l = csa->orig_u = NULL; +#endif + switch (parm->aorn) + { case GLP_USE_AT: + /* build matrix A in row-wise format */ + csa->at = &at; + csa->nt = NULL; + spx_alloc_at(csa->lp, csa->at); + spx_build_at(csa->lp, csa->at); + break; + case GLP_USE_NT: + /* build matrix N in row-wise format for initial basis */ + csa->at = NULL; + csa->nt = &nt; + spx_alloc_nt(csa->lp, csa->nt); + spx_init_nt(csa->lp, csa->nt); + spx_build_nt(csa->lp, csa->nt); + break; + default: + xassert(parm != parm); + } + /* allocate and initialize working components */ + csa->phase = 0; + csa->beta = talloc(1+csa->lp->m, double); + csa->beta_st = 0; + csa->d = talloc(1+csa->lp->n-csa->lp->m, double); + csa->d_st = 0; + switch (parm->pricing) + { case GLP_PT_STD: + csa->se = NULL; + break; + case GLP_PT_PSE: + csa->se = &se; + spx_alloc_se(csa->lp, csa->se); + break; + default: + xassert(parm != parm); + } + csa->list = talloc(1+csa->lp->n-csa->lp->m, int); +#if 0 /* 11/VI-2017 */ + csa->tcol = talloc(1+csa->lp->m, double); + csa->trow = talloc(1+csa->lp->n-csa->lp->m, double); +#else + fvs_alloc_vec(&csa->tcol, csa->lp->m); + fvs_alloc_vec(&csa->trow, csa->lp->n-csa->lp->m); +#endif +#if 1 /* 23/VI-2017 */ + csa->bp = NULL; +#endif +#if 0 /* 09/VII-2017 */ + csa->work = talloc(1+csa->lp->m, double); +#else + fvs_alloc_vec(&csa->work, csa->lp->m); +#endif + /* initialize control parameters */ + csa->msg_lev = parm->msg_lev; +#if 0 /* 23/VI-2017 */ + switch (parm->r_test) + { case GLP_RT_STD: + csa->harris = 0; + break; + case GLP_RT_HAR: +#if 1 /* 16/III-2016 */ + case GLP_RT_FLIP: + /* FIXME */ + /* currently for primal simplex GLP_RT_FLIP is equivalent + * to GLP_RT_HAR */ +#endif + csa->harris = 1; + break; + default: + xassert(parm != parm); + } +#else + switch (parm->r_test) + { case GLP_RT_STD: + case GLP_RT_HAR: + break; + case GLP_RT_FLIP: + csa->bp = talloc(1+2*csa->lp->m+1, SPXBP); + break; + default: + xassert(parm != parm); + } + csa->r_test = parm->r_test; +#endif + csa->tol_bnd = parm->tol_bnd; + csa->tol_bnd1 = .001 * parm->tol_bnd; + csa->tol_dj = parm->tol_dj; + csa->tol_dj1 = .001 * parm->tol_dj; + csa->tol_piv = parm->tol_piv; + csa->it_lim = parm->it_lim; + csa->tm_lim = parm->tm_lim; + csa->out_frq = parm->out_frq; + csa->out_dly = parm->out_dly; + /* initialize working parameters */ + csa->tm_beg = xtime(); + csa->it_beg = csa->it_cnt = P->it_cnt; + csa->it_dpy = -1; +#if 1 /* 15/VII-2017 */ + csa->tm_dpy = 0.0; +#endif + csa->inv_cnt = 0; +#if 1 /* 01/VII-2017 */ + csa->degen = 0; +#endif +#if 1 /* 23/VI-2017 */ + csa->ns_cnt = csa->ls_cnt = 0; +#endif + /* try to solve working LP */ + ret = primal_simplex(csa); + + /* return basis factorization back to problem object */ + P->valid = csa->lp->valid; + P->bfd = csa->lp->bfd; + /* set solution status */ + P->pbs_stat = csa->p_stat; + P->dbs_stat = csa->d_stat; + /* if the solver failed, do not store basis header and basic + * solution components to problem object */ + if (ret == GLP_EFAIL) + goto skip; + /* convert working LP basis to original LP basis and store it to + * problem object */ + daeh = talloc(1+csa->lp->n, int); + spx_store_basis(csa->lp, P, map, daeh); + /* compute simplex multipliers for final basic solution found by + * the solver */ +#if 0 /* 09/VII-2017 */ + spx_eval_pi(csa->lp, csa->work); +#else + spx_eval_pi(csa->lp, csa->work.vec); +#endif + /* convert working LP solution to original LP solution and store + * it into the problem object */ +#if SCALE_Z + for (i = 1; i <= csa->lp->m; i++) + csa->work.vec[i] *= csa->fz; + for (j = 1; j <= csa->lp->n-csa->lp->m; j++) + csa->d[j] *= csa->fz; +#endif +#if 0 /* 09/VII-2017 */ + spx_store_sol(csa->lp, P, SHIFT, map, daeh, csa->beta, csa->work, + csa->d); +#else + spx_store_sol(csa->lp, P, parm->shift, map, daeh, csa->beta, + csa->work.vec, csa->d); +#endif + tfree(daeh); + /* save simplex iteration count */ + P->it_cnt = csa->it_cnt; + /* report auxiliary/structural variable causing unboundedness */ + P->some = 0; + if (csa->p_stat == GLP_FEAS && csa->d_stat == GLP_NOFEAS) + { int k, kk; + /* xN[q] = x[k] causes unboundedness */ + xassert(1 <= csa->q && csa->q <= csa->lp->n - csa->lp->m); + k = csa->lp->head[csa->lp->m + csa->q]; + xassert(1 <= k && k <= csa->lp->n); + /* convert to number of original variable */ + for (kk = 1; kk <= P->m + P->n; kk++) + { if (abs(map[kk]) == k) + { P->some = kk; + break; + } + } + xassert(P->some != 0); + } +skip: /* deallocate working objects and arrays */ + spx_free_lp(csa->lp); + tfree(map); + tfree(csa->orig_c); +#if 1 /*PERTURB*/ + tfree(csa->orig_l); + tfree(csa->orig_u); +#endif + if (csa->at != NULL) + spx_free_at(csa->lp, csa->at); + if (csa->nt != NULL) + spx_free_nt(csa->lp, csa->nt); + tfree(csa->beta); + tfree(csa->d); + if (csa->se != NULL) + spx_free_se(csa->lp, csa->se); + tfree(csa->list); +#if 0 /* 11/VI-2017 */ + tfree(csa->tcol); + tfree(csa->trow); +#else + fvs_free_vec(&csa->tcol); + fvs_free_vec(&csa->trow); +#endif +#if 1 /* 23/VI-2017 */ + if (csa->bp != NULL) + tfree(csa->bp); +#endif +#if 0 /* 09/VII-2017 */ + tfree(csa->work); +#else + fvs_free_vec(&csa->work); +#endif + /* return to calling program */ + return ret; +} + +/* eof */ |