diff options
author | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
---|---|---|
committer | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
commit | ef800d4ffafdbde7d7a172ad73bd984b1695c138 (patch) | |
tree | 920cc189130f1e98f252283fce94851443641a6d /glpk-5.0/src/misc/mygmp.h | |
parent | ec4ae3c2b5cb0e83fb667f14f832ea94f68ef075 (diff) | |
download | oneapi-master.tar.gz oneapi-master.tar.bz2 |
Diffstat (limited to 'glpk-5.0/src/misc/mygmp.h')
-rw-r--r-- | glpk-5.0/src/misc/mygmp.h | 252 |
1 files changed, 252 insertions, 0 deletions
diff --git a/glpk-5.0/src/misc/mygmp.h b/glpk-5.0/src/misc/mygmp.h new file mode 100644 index 0000000..a0a87ec --- /dev/null +++ b/glpk-5.0/src/misc/mygmp.h @@ -0,0 +1,252 @@ +/* mygmp.h (integer and rational arithmetic) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* Copyright (C) 2008-2015 Free Software Foundation, Inc. +* Written by Andrew Makhorin <mao@gnu.org>. +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. +***********************************************************************/ + +#ifndef MYGMP_H +#define MYGMP_H + +#ifdef HAVE_CONFIG_H +#include <config.h> +#endif + +#ifdef HAVE_GMP /* use GNU MP library */ + +#include <gmp.h> + +#define gmp_pool_count() 0 + +#define gmp_free_mem() ((void)0) + +#else /* use GLPK MP module */ + +/*********************************************************************** +* INTEGER NUMBERS +* --------------- +* Depending on its magnitude an integer number of arbitrary precision +* is represented either in short format or in long format. +* +* Short format corresponds to the int type and allows representing +* integer numbers in the range [-(2^31-1), +(2^31-1)]. Note that for +* the most negative number of int type the short format is not used. +* +* In long format integer numbers are represented using the positional +* system with the base (radix) 2^16 = 65536: +* +* x = (-1)^s sum{j in 0..n-1} d[j] * 65536^j, +* +* where x is the integer to be represented, s is its sign (+1 or -1), +* d[j] are its digits (0 <= d[j] <= 65535). +* +* RATIONAL NUMBERS +* ---------------- +* A rational number is represented as an irreducible fraction: +* +* p / q, +* +* where p (numerator) and q (denominator) are integer numbers (q > 0) +* having no common divisors. */ + +struct mpz +{ /* integer number */ + int val; + /* if ptr is a null pointer, the number is in short format, and + val is its value; otherwise, the number is in long format, and + val is its sign (+1 or -1) */ + struct mpz_seg *ptr; + /* pointer to the linked list of the number segments ordered in + ascending of powers of the base */ +}; + +struct mpz_seg +{ /* integer number segment */ + unsigned short d[6]; + /* six digits of the number ordered in ascending of powers of the + base */ + struct mpz_seg *next; + /* pointer to the next number segment */ +}; + +struct mpq +{ /* rational number (p / q) */ + struct mpz p; + /* numerator */ + struct mpz q; + /* denominator */ +}; + +typedef struct mpz *mpz_t; +typedef struct mpq *mpq_t; + +#define gmp_get_atom _glp_gmp_get_atom +void *gmp_get_atom(int size); + +#define gmp_free_atom _glp_gmp_free_atom +void gmp_free_atom(void *ptr, int size); + +#define gmp_pool_count _glp_gmp_pool_count +int gmp_pool_count(void); + +#define gmp_get_work _glp_gmp_get_work +unsigned short *gmp_get_work(int size); + +#define gmp_free_mem _glp_gmp_free_mem +void gmp_free_mem(void); + +#define mpz_init(x) (void)((x) = _mpz_init()) + +#define _mpz_init _glp_mpz_init +mpz_t _mpz_init(void); +/* initialize x and set its value to 0 */ + +#define mpz_clear _glp_mpz_clear +void mpz_clear(mpz_t x); +/* free the space occupied by x */ + +#define mpz_set _glp_mpz_set +void mpz_set(mpz_t z, mpz_t x); +/* set the value of z from x */ + +#define mpz_set_si _glp_mpz_set_si +void mpz_set_si(mpz_t x, int val); +/* set the value of x to val */ + +#define mpz_get_d _glp_mpz_get_d +double mpz_get_d(mpz_t x); +/* convert x to a double, truncating if necessary */ + +#define mpz_get_d_2exp _glp_mpz_get_d_2exp +double mpz_get_d_2exp(int *exp, mpz_t x); +/* convert x to a double, returning the exponent separately */ + +#define mpz_swap _glp_mpz_swap +void mpz_swap(mpz_t x, mpz_t y); +/* swap the values x and y efficiently */ + +#define mpz_add _glp_mpz_add +void mpz_add(mpz_t, mpz_t, mpz_t); +/* set z to x + y */ + +#define mpz_sub _glp_mpz_sub +void mpz_sub(mpz_t, mpz_t, mpz_t); +/* set z to x - y */ + +#define mpz_mul _glp_mpz_mul +void mpz_mul(mpz_t, mpz_t, mpz_t); +/* set z to x * y */ + +#define mpz_neg _glp_mpz_neg +void mpz_neg(mpz_t z, mpz_t x); +/* set z to 0 - x */ + +#define mpz_abs _glp_mpz_abs +void mpz_abs(mpz_t z, mpz_t x); +/* set z to the absolute value of x */ + +#define mpz_div _glp_mpz_div +void mpz_div(mpz_t q, mpz_t r, mpz_t x, mpz_t y); +/* divide x by y, forming quotient q and/or remainder r */ + +#define mpz_gcd _glp_mpz_gcd +void mpz_gcd(mpz_t z, mpz_t x, mpz_t y); +/* set z to the greatest common divisor of x and y */ + +#define mpz_cmp _glp_mpz_cmp +int mpz_cmp(mpz_t x, mpz_t y); +/* compare x and y */ + +#define mpz_sgn _glp_mpz_sgn +int mpz_sgn(mpz_t x); +/* return +1 if x > 0, 0 if x = 0, and -1 if x < 0 */ + +#define mpz_out_str _glp_mpz_out_str +int mpz_out_str(void *fp, int base, mpz_t x); +/* output x on stream fp, as a string in given base */ + +#define mpq_init(x) (void)((x) = _mpq_init()) + +#define _mpq_init _glp_mpq_init +mpq_t _mpq_init(void); +/* initialize x, and set its value to 0/1 */ + +#define mpq_clear _glp_mpq_clear +void mpq_clear(mpq_t x); +/* free the space occupied by x */ + +#define mpq_canonicalize _glp_mpq_canonicalize +void mpq_canonicalize(mpq_t x); +/* canonicalize x */ + +#define mpq_set _glp_mpq_set +void mpq_set(mpq_t z, mpq_t x); +/* set the value of z from x */ + +#define mpq_set_si _glp_mpq_set_si +void mpq_set_si(mpq_t x, int p, unsigned int q); +/* set the value of x to p/q */ + +#define mpq_get_d _glp_mpq_get_d +double mpq_get_d(mpq_t x); +/* convert x to a double, truncating if necessary */ + +#define mpq_set_d _glp_mpq_set_d +void mpq_set_d(mpq_t x, double val); +/* set x to val; there is no rounding, the conversion is exact */ + +#define mpq_add _glp_mpq_add +void mpq_add(mpq_t z, mpq_t x, mpq_t y); +/* set z to x + y */ + +#define mpq_sub _glp_mpq_sub +void mpq_sub(mpq_t z, mpq_t x, mpq_t y); +/* set z to x - y */ + +#define mpq_mul _glp_mpq_mul +void mpq_mul(mpq_t z, mpq_t x, mpq_t y); +/* set z to x * y */ + +#define mpq_div _glp_mpq_div +void mpq_div(mpq_t z, mpq_t x, mpq_t y); +/* set z to x / y */ + +#define mpq_neg _glp_mpq_neg +void mpq_neg(mpq_t z, mpq_t x); +/* set z to 0 - x */ + +#define mpq_abs _glp_mpq_abs +void mpq_abs(mpq_t z, mpq_t x); +/* set z to the absolute value of x */ + +#define mpq_cmp _glp_mpq_cmp +int mpq_cmp(mpq_t x, mpq_t y); +/* compare x and y */ + +#define mpq_sgn _glp_mpq_sgn +int mpq_sgn(mpq_t x); +/* return +1 if x > 0, 0 if x = 0, and -1 if x < 0 */ + +#define mpq_out_str _glp_mpq_out_str +int mpq_out_str(void *fp, int base, mpq_t x); +/* output x on stream fp, as a string in given base */ + +#endif + +#endif + +/* eof */ |