diff options
author | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
---|---|---|
committer | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
commit | ef800d4ffafdbde7d7a172ad73bd984b1695c138 (patch) | |
tree | 920cc189130f1e98f252283fce94851443641a6d /glpk-5.0/src/bflib/sgf.h | |
parent | ec4ae3c2b5cb0e83fb667f14f832ea94f68ef075 (diff) | |
download | oneapi-ef800d4ffafdbde7d7a172ad73bd984b1695c138.tar.gz oneapi-ef800d4ffafdbde7d7a172ad73bd984b1695c138.tar.bz2 |
Diffstat (limited to 'glpk-5.0/src/bflib/sgf.h')
-rw-r--r-- | glpk-5.0/src/bflib/sgf.h | 201 |
1 files changed, 201 insertions, 0 deletions
diff --git a/glpk-5.0/src/bflib/sgf.h b/glpk-5.0/src/bflib/sgf.h new file mode 100644 index 0000000..4bcac21 --- /dev/null +++ b/glpk-5.0/src/bflib/sgf.h @@ -0,0 +1,201 @@ +/* sgf.h (sparse Gaussian factorizer) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* Copyright (C) 2012-2013 Free Software Foundation, Inc. +* Written by Andrew Makhorin <mao@gnu.org>. +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. +***********************************************************************/ + +#ifndef SGF_H +#define SGF_H + +#include "luf.h" + +typedef struct SGF SGF; + +struct SGF +{ /* sparse Gaussian factorizer workspace */ + LUF *luf; + /* LU-factorization being computed */ + /*--------------------------------------------------------------*/ + /* to efficiently choose pivot elements according to Markowitz + * strategy, the search technique proposed by Iain Duff is used; + * it is based on using two families of sets {R[0], ..., R[n]} + * and {C[0], ..., C[n]}, where R[k] and C[k], 0 <= k <= n, are, + * respectively, sets of rows and columns of the active submatrix + * of matrix V having k non-zeros (i.e. whose length is k); each + * set R[k] and C[k] is implemented as a doubly linked list */ + int *rs_head; /* int rs_head[1+n]; */ + /* rs_head[k], 0 <= k <= n, is the number of first row, which + * has k non-zeros in the active submatrix */ + int *rs_prev; /* int rs_prev[1+n]; */ + /* rs_prev[0] is not used; + * rs_prev[i], 1 <= i <= n, is the number of previous row, which + * has the same number of non-zeros as i-th row; + * rs_prev[i] < 0 means that i-th row is inactive */ + int *rs_next; /* int rs_next[1+n]; */ + /* rs_next[0] is not used; + * rs_next[i], 1 <= i <= n, is the number of next row, which has + * the same number of non-zeros as i-th row; + * rs_next[i] < 0 means that i-th row is inactive */ + int *cs_head; /* int cs_head[1+n]; */ + /* cs_head[k], 0 <= k <= n, is the number of first column, which + * has k non-zeros in the active submatrix */ + int *cs_prev; /* int cs_prev[1+n]; */ + /* cs_prev[0] is not used; + * cs_prev[j], 1 <= j <= n, is the number of previous column, + * which has the same number of non-zeros as j-th column; + * cs_prev[j] < 0 means that j-th column is inactive */ + int *cs_next; /* int cs_next[1+n]; */ + /* cs_next[0] is not used; + * cs_next[j], 1 <= j <= n, is the number of next column, which + * has the same number of non-zeros as j-th column; + * cs_next[j] < 0 means that j-th column is inactive */ + /* NOTE: cs_prev[j] = cs_next[j] = j means that j-th column was + * temporarily removed from corresponding set C[k] by the + * pivoting routine according to Uwe Suhl's heuristic */ + /*--------------------------------------------------------------*/ + /* working arrays */ + double *vr_max; /* int vr_max[1+n]; */ + /* vr_max[0] is not used; + * vr_max[i], 1 <= i <= n, is used only if i-th row of matrix V + * is active (i.e. belongs to the active submatrix), and is the + * largest magnitude of elements in that row; if vr_max[i] < 0, + * the largest magnitude is unknown yet */ + char *flag; /* char flag[1+n]; */ + /* boolean working array */ + double *work; /* double work[1+n]; */ + /* floating-point working array */ + /*--------------------------------------------------------------*/ + /* control parameters */ + int updat; + /* if this flag is set, the matrix V is assumed to be updatable; + * in this case factorized (non-active) part of V is stored in + * the left part of SVA rather than in its right part */ + double piv_tol; + /* threshold pivoting tolerance, 0 < piv_tol < 1; element v[i,j] + * of the active submatrix fits to be pivot if it satisfies to + * the stability criterion |v[i,j]| >= piv_tol * max |v[i,*]|, + * i.e. if it is not very small in the magnitude among other + * elements in the same row; decreasing this parameter gives + * better sparsity at the expense of numerical accuracy and vice + * versa */ + int piv_lim; + /* maximal allowable number of pivot candidates to be considered; + * if piv_lim pivot candidates have been considered, the pivoting + * routine terminates the search with the best candidate found */ + int suhl; + /* if this flag is set, the pivoting routine applies a heuristic + * proposed by Uwe Suhl: if a column of the active submatrix has + * no eligible pivot candidates (i.e. all its elements do not + * satisfy to the stability criterion), the routine excludes it + * from futher consideration until it becomes column singleton; + * in many cases this allows reducing the time needed to choose + * the pivot */ + double eps_tol; + /* epsilon tolerance; each element of the active submatrix, whose + * magnitude is less than eps_tol, is replaced by exact zero */ +#if 0 /* FIXME */ + double den_lim; + /* density limit; if the density of the active submatrix reaches + * this limit, the factorization routine switches from sparse to + * dense mode */ +#endif +}; + +#define sgf_activate_row(i) \ + do \ + { int len = vr_len[i]; \ + rs_prev[i] = 0; \ + rs_next[i] = rs_head[len]; \ + if (rs_next[i] != 0) \ + rs_prev[rs_next[i]] = i; \ + rs_head[len] = i; \ + } while (0) +/* include i-th row of matrix V in active set R[len] */ + +#define sgf_deactivate_row(i) \ + do \ + { if (rs_prev[i] == 0) \ + rs_head[vr_len[i]] = rs_next[i]; \ + else \ + rs_next[rs_prev[i]] = rs_next[i]; \ + if (rs_next[i] == 0) \ + ; \ + else \ + rs_prev[rs_next[i]] = rs_prev[i]; \ + rs_prev[i] = rs_next[i] = -1; \ + } while (0) +/* remove i-th row of matrix V from active set R[len] */ + +#define sgf_activate_col(j) \ + do \ + { int len = vc_len[j]; \ + cs_prev[j] = 0; \ + cs_next[j] = cs_head[len]; \ + if (cs_next[j] != 0) \ + cs_prev[cs_next[j]] = j; \ + cs_head[len] = j; \ + } while (0) +/* include j-th column of matrix V in active set C[len] */ + +#define sgf_deactivate_col(j) \ + do \ + { if (cs_prev[j] == 0) \ + cs_head[vc_len[j]] = cs_next[j]; \ + else \ + cs_next[cs_prev[j]] = cs_next[j]; \ + if (cs_next[j] == 0) \ + ; \ + else \ + cs_prev[cs_next[j]] = cs_prev[j]; \ + cs_prev[j] = cs_next[j] = -1; \ + } while (0) +/* remove j-th column of matrix V from active set C[len] */ + +#define sgf_reduce_nuc _glp_sgf_reduce_nuc +int sgf_reduce_nuc(LUF *luf, int *k1, int *k2, int cnt[/*1+n*/], + int list[/*1+n*/]); +/* initial reordering to minimize nucleus size */ + +#define sgf_singl_phase _glp_sgf_singl_phase +int sgf_singl_phase(LUF *luf, int k1, int k2, int updat, + int ind[/*1+n*/], double val[/*1+n*/]); +/* compute LU-factorization (singleton phase) */ + +#define sgf_choose_pivot _glp_sgf_choose_pivot +int sgf_choose_pivot(SGF *sgf, int *p, int *q); +/* choose pivot element v[p,q] */ + +#define sgf_eliminate _glp_sgf_eliminate +int sgf_eliminate(SGF *sgf, int p, int q); +/* perform gaussian elimination */ + +#define sgf_dense_lu _glp_sgf_dense_lu +int sgf_dense_lu(int n, double a[], int r[], int c[], double eps); +/* compute dense LU-factorization with full pivoting */ + +#define sgf_dense_phase _glp_sgf_dense_phase +int sgf_dense_phase(LUF *luf, int k, int updat); +/* compute LU-factorization (dense phase) */ + +#define sgf_factorize _glp_sgf_factorize +int sgf_factorize(SGF *sgf, int singl); +/* compute LU-factorization (main routine) */ + +#endif + +/* eof */ |