diff options
author | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
---|---|---|
committer | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
commit | ef800d4ffafdbde7d7a172ad73bd984b1695c138 (patch) | |
tree | 920cc189130f1e98f252283fce94851443641a6d /glpk-5.0/src/bflib/scf.c | |
parent | ec4ae3c2b5cb0e83fb667f14f832ea94f68ef075 (diff) | |
download | oneapi-ef800d4ffafdbde7d7a172ad73bd984b1695c138.tar.gz oneapi-ef800d4ffafdbde7d7a172ad73bd984b1695c138.tar.bz2 |
Diffstat (limited to 'glpk-5.0/src/bflib/scf.c')
-rw-r--r-- | glpk-5.0/src/bflib/scf.c | 521 |
1 files changed, 521 insertions, 0 deletions
diff --git a/glpk-5.0/src/bflib/scf.c b/glpk-5.0/src/bflib/scf.c new file mode 100644 index 0000000..b4f3a2c --- /dev/null +++ b/glpk-5.0/src/bflib/scf.c @@ -0,0 +1,521 @@ +/* scf.c (sparse updatable Schur-complement-based factorization) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* Copyright (C) 2013-2014 Free Software Foundation, Inc. +* Written by Andrew Makhorin <mao@gnu.org>. +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. +***********************************************************************/ + +#include "env.h" +#include "scf.h" + +/*********************************************************************** +* scf_r0_solve - solve system R0 * x = b or R0'* x = b +* +* This routine solves the system R0 * x = b (if tr is zero) or the +* system R0'* x = b (if tr is non-zero), where R0 is the left factor +* of the initial matrix A0 = R0 * S0. +* +* On entry the array x should contain elements of the right-hand side +* vector b in locations x[1], ..., x[n0], where n0 is the order of the +* matrix R0. On exit the array x will contain elements of the solution +* vector in the same locations. */ + +void scf_r0_solve(SCF *scf, int tr, double x[/*1+n0*/]) +{ switch (scf->type) + { case 1: + /* A0 = F0 * V0, so R0 = F0 */ + if (!tr) + luf_f_solve(scf->a0.luf, x); + else + luf_ft_solve(scf->a0.luf, x); + break; + case 2: + /* A0 = I * A0, so R0 = I */ + break; + default: + xassert(scf != scf); + } + return; +} + +/*********************************************************************** +* scf_s0_solve - solve system S0 * x = b or S0'* x = b +* +* This routine solves the system S0 * x = b (if tr is zero) or the +* system S0'* x = b (if tr is non-zero), where S0 is the right factor +* of the initial matrix A0 = R0 * S0. +* +* On entry the array x should contain elements of the right-hand side +* vector b in locations x[1], ..., x[n0], where n0 is the order of the +* matrix S0. On exit the array x will contain elements of the solution +* vector in the same locations. +* +* The routine uses locations [1], ..., [n0] of three working arrays +* w1, w2, and w3. (In case of type = 1 arrays w2 and w3 are not used +* and can be specified as NULL.) */ + +void scf_s0_solve(SCF *scf, int tr, double x[/*1+n0*/], + double w1[/*1+n0*/], double w2[/*1+n0*/], double w3[/*1+n0*/]) +{ int n0 = scf->n0; + switch (scf->type) + { case 1: + /* A0 = F0 * V0, so S0 = V0 */ + if (!tr) + luf_v_solve(scf->a0.luf, x, w1); + else + luf_vt_solve(scf->a0.luf, x, w1); + break; + case 2: + /* A0 = I * A0, so S0 = A0 */ + if (!tr) + btf_a_solve(scf->a0.btf, x, w1, w2, w3); + else + btf_at_solve(scf->a0.btf, x, w1, w2, w3); + break; + default: + xassert(scf != scf); + } + memcpy(&x[1], &w1[1], n0 * sizeof(double)); + return; +} + +/*********************************************************************** +* scf_r_prod - compute product y := y + alpha * R * x +* +* This routine computes the product y := y + alpha * R * x, where +* x is a n0-vector, alpha is a scalar, y is a nn-vector. +* +* Since matrix R is available by rows, the product components are +* computed as inner products: +* +* y[i] = y[i] + alpha * (i-th row of R) * x +* +* for i = 1, 2, ..., nn. */ + +void scf_r_prod(SCF *scf, double y[/*1+nn*/], double a, const double + x[/*1+n0*/]) +{ int nn = scf->nn; + SVA *sva = scf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int rr_ref = scf->rr_ref; + int *rr_ptr = &sva->ptr[rr_ref-1]; + int *rr_len = &sva->len[rr_ref-1]; + int i, ptr, end; + double t; + for (i = 1; i <= nn; i++) + { /* t := (i-th row of R) * x */ + t = 0.0; + for (end = (ptr = rr_ptr[i]) + rr_len[i]; ptr < end; ptr++) + t += sv_val[ptr] * x[sv_ind[ptr]]; + /* y[i] := y[i] + alpha * t */ + y[i] += a * t; + } + return; +} + +/*********************************************************************** +* scf_rt_prod - compute product y := y + alpha * R'* x +* +* This routine computes the product y := y + alpha * R'* x, where +* R' is a matrix transposed to R, x is a nn-vector, alpha is a scalar, +* y is a n0-vector. +* +* Since matrix R is available by rows, the product is computed as a +* linear combination: +* +* y := y + alpha * (R'[1] * x[1] + ... + R'[nn] * x[nn]), +* +* where R'[i] is i-th row of R. */ + +void scf_rt_prod(SCF *scf, double y[/*1+n0*/], double a, const double + x[/*1+nn*/]) +{ int nn = scf->nn; + SVA *sva = scf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int rr_ref = scf->rr_ref; + int *rr_ptr = &sva->ptr[rr_ref-1]; + int *rr_len = &sva->len[rr_ref-1]; + int i, ptr, end; + double t; + for (i = 1; i <= nn; i++) + { if (x[i] == 0.0) + continue; + /* y := y + alpha * R'[i] * x[i] */ + t = a * x[i]; + for (end = (ptr = rr_ptr[i]) + rr_len[i]; ptr < end; ptr++) + y[sv_ind[ptr]] += sv_val[ptr] * t; + } + return; +} + +/*********************************************************************** +* scf_s_prod - compute product y := y + alpha * S * x +* +* This routine computes the product y := y + alpha * S * x, where +* x is a nn-vector, alpha is a scalar, y is a n0 vector. +* +* Since matrix S is available by columns, the product is computed as +* a linear combination: +* +* y := y + alpha * (S[1] * x[1] + ... + S[nn] * x[nn]), +* +* where S[j] is j-th column of S. */ + +void scf_s_prod(SCF *scf, double y[/*1+n0*/], double a, const double + x[/*1+nn*/]) +{ int nn = scf->nn; + SVA *sva = scf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int ss_ref = scf->ss_ref; + int *ss_ptr = &sva->ptr[ss_ref-1]; + int *ss_len = &sva->len[ss_ref-1]; + int j, ptr, end; + double t; + for (j = 1; j <= nn; j++) + { if (x[j] == 0.0) + continue; + /* y := y + alpha * S[j] * x[j] */ + t = a * x[j]; + for (end = (ptr = ss_ptr[j]) + ss_len[j]; ptr < end; ptr++) + y[sv_ind[ptr]] += sv_val[ptr] * t; + } + return; +} + +/*********************************************************************** +* scf_st_prod - compute product y := y + alpha * S'* x +* +* This routine computes the product y := y + alpha * S'* x, where +* S' is a matrix transposed to S, x is a n0-vector, alpha is a scalar, +* y is a nn-vector. +* +* Since matrix S is available by columns, the product components are +* computed as inner products: +* +* y[j] := y[j] + alpha * (j-th column of S) * x +* +* for j = 1, 2, ..., nn. */ + +void scf_st_prod(SCF *scf, double y[/*1+nn*/], double a, const double + x[/*1+n0*/]) +{ int nn = scf->nn; + SVA *sva = scf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int ss_ref = scf->ss_ref; + int *ss_ptr = &sva->ptr[ss_ref-1]; + int *ss_len = &sva->len[ss_ref-1]; + int j, ptr, end; + double t; + for (j = 1; j <= nn; j++) + { /* t := (j-th column of S) * x */ + t = 0.0; + for (end = (ptr = ss_ptr[j]) + ss_len[j]; ptr < end; ptr++) + t += sv_val[ptr] * x[sv_ind[ptr]]; + /* y[j] := y[j] + alpha * t */ + y[j] += a * t; + } + return; +} + +/*********************************************************************** +* scf_a_solve - solve system A * x = b +* +* This routine solves the system A * x = b, where A is the current +* matrix. +* +* On entry the array x should contain elements of the right-hand side +* vector b in locations x[1], ..., x[n], where n is the order of the +* matrix A. On exit the array x will contain elements of the solution +* vector in the same locations. +* +* For details see the program documentation. */ + +void scf_a_solve(SCF *scf, double x[/*1+n*/], + double w[/*1+n0+nn*/], double work1[/*1+max(n0,nn)*/], + double work2[/*1+n*/], double work3[/*1+n*/]) +{ int n = scf->n; + int n0 = scf->n0; + int nn = scf->nn; + int *pp_ind = scf->pp_ind; + int *qq_inv = scf->qq_inv; + int i, ii; + /* (u1, u2) := inv(P) * (b, 0) */ + for (ii = 1; ii <= n0+nn; ii++) + { i = pp_ind[ii]; +#if 1 /* FIXME: currently P = I */ + xassert(i == ii); +#endif + w[ii] = (i <= n ? x[i] : 0.0); + } + /* v1 := inv(R0) * u1 */ + scf_r0_solve(scf, 0, &w[0]); + /* v2 := u2 - R * v1 */ + scf_r_prod(scf, &w[n0], -1.0, &w[0]); + /* w2 := inv(C) * v2 */ + ifu_a_solve(&scf->ifu, &w[n0], work1); + /* w1 := inv(S0) * (v1 - S * w2) */ + scf_s_prod(scf, &w[0], -1.0, &w[n0]); + scf_s0_solve(scf, 0, &w[0], work1, work2, work3); + /* (x, x~) := inv(Q) * (w1, w2); x~ is not needed */ + for (i = 1; i <= n; i++) + x[i] = w[qq_inv[i]]; + return; +} + +/*********************************************************************** +* scf_at_solve - solve system A'* x = b +* +* This routine solves the system A'* x = b, where A' is a matrix +* transposed to the current matrix A. +* +* On entry the array x should contain elements of the right-hand side +* vector b in locations x[1], ..., x[n], where n is the order of the +* matrix A. On exit the array x will contain elements of the solution +* vector in the same locations. +* +* For details see the program documentation. */ + +void scf_at_solve(SCF *scf, double x[/*1+n*/], + double w[/*1+n0+nn*/], double work1[/*1+max(n0,nn)*/], + double work2[/*1+n*/], double work3[/*1+n*/]) +{ int n = scf->n; + int n0 = scf->n0; + int nn = scf->nn; + int *pp_inv = scf->pp_inv; + int *qq_ind = scf->qq_ind; + int i, ii; + /* (u1, u2) := Q * (b, 0) */ + for (ii = 1; ii <= n0+nn; ii++) + { i = qq_ind[ii]; + w[ii] = (i <= n ? x[i] : 0.0); + } + /* v1 := inv(S0') * u1 */ + scf_s0_solve(scf, 1, &w[0], work1, work2, work3); + /* v2 := inv(C') * (u2 - S'* v1) */ + scf_st_prod(scf, &w[n0], -1.0, &w[0]); + ifu_at_solve(&scf->ifu, &w[n0], work1); + /* w2 := v2 */ + /* nop */ + /* w1 := inv(R0') * (v1 - R'* w2) */ + scf_rt_prod(scf, &w[0], -1.0, &w[n0]); + scf_r0_solve(scf, 1, &w[0]); + /* compute (x, x~) := P * (w1, w2); x~ is not needed */ + for (i = 1; i <= n; i++) + { +#if 1 /* FIXME: currently P = I */ + xassert(pp_inv[i] == i); +#endif + x[i] = w[pp_inv[i]]; + } + return; +} + +/*********************************************************************** +* scf_add_r_row - add new row to matrix R +* +* This routine adds new (nn+1)-th row to matrix R, whose elements are +* specified in locations w[1,...,n0]. */ + +void scf_add_r_row(SCF *scf, const double w[/*1+n0*/]) +{ int n0 = scf->n0; + int nn = scf->nn; + SVA *sva = scf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int rr_ref = scf->rr_ref; + int *rr_ptr = &sva->ptr[rr_ref-1]; + int *rr_len = &sva->len[rr_ref-1]; + int j, len, ptr; + xassert(0 <= nn && nn < scf->nn_max); + /* determine length of new row */ + len = 0; + for (j = 1; j <= n0; j++) + { if (w[j] != 0.0) + len++; + } + /* reserve locations for new row in static part of SVA */ + if (len > 0) + { if (sva->r_ptr - sva->m_ptr < len) + { sva_more_space(sva, len); + sv_ind = sva->ind; + sv_val = sva->val; + } + sva_reserve_cap(sva, rr_ref + nn, len); + } + /* store new row in sparse format */ + ptr = rr_ptr[nn+1]; + for (j = 1; j <= n0; j++) + { if (w[j] != 0.0) + { sv_ind[ptr] = j; + sv_val[ptr] = w[j]; + ptr++; + } + } + xassert(ptr - rr_ptr[nn+1] == len); + rr_len[nn+1] = len; +#ifdef GLP_DEBUG + sva_check_area(sva); +#endif + return; +} + +/*********************************************************************** +* scf_add_s_col - add new column to matrix S +* +* This routine adds new (nn+1)-th column to matrix S, whose elements +* are specified in locations v[1,...,n0]. */ + +void scf_add_s_col(SCF *scf, const double v[/*1+n0*/]) +{ int n0 = scf->n0; + int nn = scf->nn; + SVA *sva = scf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int ss_ref = scf->ss_ref; + int *ss_ptr = &sva->ptr[ss_ref-1]; + int *ss_len = &sva->len[ss_ref-1]; + int i, len, ptr; + xassert(0 <= nn && nn < scf->nn_max); + /* determine length of new column */ + len = 0; + for (i = 1; i <= n0; i++) + { if (v[i] != 0.0) + len++; + } + /* reserve locations for new column in static part of SVA */ + if (len > 0) + { if (sva->r_ptr - sva->m_ptr < len) + { sva_more_space(sva, len); + sv_ind = sva->ind; + sv_val = sva->val; + } + sva_reserve_cap(sva, ss_ref + nn, len); + } + /* store new column in sparse format */ + ptr = ss_ptr[nn+1]; + for (i = 1; i <= n0; i++) + { if (v[i] != 0.0) + { sv_ind[ptr] = i; + sv_val[ptr] = v[i]; + ptr++; + } + } + xassert(ptr - ss_ptr[nn+1] == len); + ss_len[nn+1] = len; +#ifdef GLP_DEBUG + sva_check_area(sva); +#endif + return; +} + +/*********************************************************************** +* scf_update_aug - update factorization of augmented matrix +* +* Given factorization of the current augmented matrix: +* +* ( A0 A1 ) ( R0 ) ( S0 S ) +* ( ) = ( ) ( ), +* ( A2 A3 ) ( R I ) ( C ) +* +* this routine computes factorization of the new augmented matrix: +* +* ( A0 | A1 b ) +* ( ---+------ ) ( A0 A1^ ) ( R0 ) ( S0 S^ ) +* ( A2 | A3 f ) = ( ) = ( ) ( ), +* ( | ) ( A2^ A3^ ) ( R^ I ) ( C^ ) +* ( d' | g' h ) +* +* where b and d are specified n0-vectors, f and g are specified +* nn-vectors, and h is a specified scalar. (Note that corresponding +* arrays are clobbered on exit.) +* +* The parameter upd specifies how to update factorization of the Schur +* complement C: +* +* 1 Bartels-Golub updating. +* +* 2 Givens rotations updating. +* +* The working arrays w1, w2, and w3 are used in the same way as in the +* routine scf_s0_solve. +* +* RETURNS +* +* 0 Factorization has been successfully updated. +* +* 1 Updating limit has been reached. +* +* 2 Updating IFU-factorization of matrix C failed. +* +* For details see the program documentation. */ + +int scf_update_aug(SCF *scf, double b[/*1+n0*/], double d[/*1+n0*/], + double f[/*1+nn*/], double g[/*1+nn*/], double h, int upd, + double w1[/*1+n0*/], double w2[/*1+n0*/], double w3[/*1+n0*/]) +{ int n0 = scf->n0; + int k, ret; + double *v, *w, *x, *y, z; + if (scf->nn == scf->nn_max) + { /* updating limit has been reached */ + return 1; + } + /* v := inv(R0) * b */ + scf_r0_solve(scf, 0, (v = b)); + /* w := inv(S0') * d */ + scf_s0_solve(scf, 1, (w = d), w1, w2, w3); + /* x := f - R * v */ + scf_r_prod(scf, (x = f), -1.0, v); + /* y := g - S'* w */ + scf_st_prod(scf, (y = g), -1.0, w); + /* z := h - v'* w */ + z = h; + for (k = 1; k <= n0; k++) + z -= v[k] * w[k]; + /* new R := R with row w added */ + scf_add_r_row(scf, w); + /* new S := S with column v added */ + scf_add_s_col(scf, v); + /* update IFU-factorization of C */ + switch (upd) + { case 1: + ret = ifu_bg_update(&scf->ifu, x, y, z); + break; + case 2: + ret = ifu_gr_update(&scf->ifu, x, y, z); + break; + default: + xassert(upd != upd); + } + if (ret != 0) + { /* updating IFU-factorization failed */ + return 2; + } + /* increase number of additional rows and columns */ + scf->nn++; + /* expand P and Q */ + k = n0 + scf->nn; + scf->pp_ind[k] = scf->pp_inv[k] = k; + scf->qq_ind[k] = scf->qq_inv[k] = k; + /* factorization has been successfully updated */ + return 0; +} + +/* eof */ |