diff options
author | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
---|---|---|
committer | Pasha <pasha@member.fsf.org> | 2023-01-27 00:54:07 +0000 |
commit | ef800d4ffafdbde7d7a172ad73bd984b1695c138 (patch) | |
tree | 920cc189130f1e98f252283fce94851443641a6d /glpk-5.0/src/api/intfeas1.c | |
parent | ec4ae3c2b5cb0e83fb667f14f832ea94f68ef075 (diff) | |
download | oneapi-master.tar.gz oneapi-master.tar.bz2 |
Diffstat (limited to 'glpk-5.0/src/api/intfeas1.c')
-rw-r--r-- | glpk-5.0/src/api/intfeas1.c | 265 |
1 files changed, 265 insertions, 0 deletions
diff --git a/glpk-5.0/src/api/intfeas1.c b/glpk-5.0/src/api/intfeas1.c new file mode 100644 index 0000000..d500251 --- /dev/null +++ b/glpk-5.0/src/api/intfeas1.c @@ -0,0 +1,265 @@ +/* intfeas1.c (solve integer feasibility problem) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* Copyright (C) 2011-2016 Free Software Foundation, Inc. +* Written by Andrew Makhorin <mao@gnu.org>. +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. +***********************************************************************/ + +#include "env.h" +#include "npp.h" + +int glp_intfeas1(glp_prob *P, int use_bound, int obj_bound) +{ /* solve integer feasibility problem */ + NPP *npp = NULL; + glp_prob *mip = NULL; + int *obj_ind = NULL; + double *obj_val = NULL; + int obj_row = 0; + int i, j, k, obj_len, temp, ret; +#if 0 /* 04/IV-2016 */ + /* check the problem object */ + if (P == NULL || P->magic != GLP_PROB_MAGIC) + xerror("glp_intfeas1: P = %p; invalid problem object\n", + P); +#endif + if (P->tree != NULL) + xerror("glp_intfeas1: operation not allowed\n"); + /* integer solution is currently undefined */ + P->mip_stat = GLP_UNDEF; + P->mip_obj = 0.0; + /* check columns (variables) */ + for (j = 1; j <= P->n; j++) + { GLPCOL *col = P->col[j]; +#if 0 /* binarization is not yet implemented */ + if (!(col->kind == GLP_IV || col->type == GLP_FX)) + { xprintf("glp_intfeas1: column %d: non-integer non-fixed var" + "iable not allowed\n", j); +#else + if (!((col->kind == GLP_IV && col->lb == 0.0 && col->ub == 1.0) + || col->type == GLP_FX)) + { xprintf("glp_intfeas1: column %d: non-binary non-fixed vari" + "able not allowed\n", j); +#endif + ret = GLP_EDATA; + goto done; + } + temp = (int)col->lb; + if ((double)temp != col->lb) + { if (col->type == GLP_FX) + xprintf("glp_intfeas1: column %d: fixed value %g is non-" + "integer or out of range\n", j, col->lb); + else + xprintf("glp_intfeas1: column %d: lower bound %g is non-" + "integer or out of range\n", j, col->lb); + ret = GLP_EDATA; + goto done; + } + temp = (int)col->ub; + if ((double)temp != col->ub) + { xprintf("glp_intfeas1: column %d: upper bound %g is non-int" + "eger or out of range\n", j, col->ub); + ret = GLP_EDATA; + goto done; + } + if (col->type == GLP_DB && col->lb > col->ub) + { xprintf("glp_intfeas1: column %d: lower bound %g is greater" + " than upper bound %g\n", j, col->lb, col->ub); + ret = GLP_EBOUND; + goto done; + } + } + /* check rows (constraints) */ + for (i = 1; i <= P->m; i++) + { GLPROW *row = P->row[i]; + GLPAIJ *aij; + for (aij = row->ptr; aij != NULL; aij = aij->r_next) + { temp = (int)aij->val; + if ((double)temp != aij->val) + { xprintf("glp_intfeas1: row = %d, column %d: constraint c" + "oefficient %g is non-integer or out of range\n", + i, aij->col->j, aij->val); + ret = GLP_EDATA; + goto done; + } + } + temp = (int)row->lb; + if ((double)temp != row->lb) + { if (row->type == GLP_FX) + xprintf("glp_intfeas1: row = %d: fixed value %g is non-i" + "nteger or out of range\n", i, row->lb); + else + xprintf("glp_intfeas1: row = %d: lower bound %g is non-i" + "nteger or out of range\n", i, row->lb); + ret = GLP_EDATA; + goto done; + } + temp = (int)row->ub; + if ((double)temp != row->ub) + { xprintf("glp_intfeas1: row = %d: upper bound %g is non-inte" + "ger or out of range\n", i, row->ub); + ret = GLP_EDATA; + goto done; + } + if (row->type == GLP_DB && row->lb > row->ub) + { xprintf("glp_intfeas1: row %d: lower bound %g is greater th" + "an upper bound %g\n", i, row->lb, row->ub); + ret = GLP_EBOUND; + goto done; + } + } + /* check the objective function */ +#if 1 /* 08/I-2017 by cmatraki & mao */ + if (!use_bound) + { /* skip check if no obj. bound is specified */ + goto skip; + } +#endif + temp = (int)P->c0; + if ((double)temp != P->c0) + { xprintf("glp_intfeas1: objective constant term %g is non-integ" + "er or out of range\n", P->c0); + ret = GLP_EDATA; + goto done; + } + for (j = 1; j <= P->n; j++) + { temp = (int)P->col[j]->coef; + if ((double)temp != P->col[j]->coef) + { xprintf("glp_intfeas1: column %d: objective coefficient is " + "non-integer or out of range\n", j, P->col[j]->coef); + ret = GLP_EDATA; + goto done; + } + } +#if 1 /* 08/I-2017 by cmatraki & mao */ +skip: ; +#endif + /* save the objective function and set it to zero */ + obj_ind = xcalloc(1+P->n, sizeof(int)); + obj_val = xcalloc(1+P->n, sizeof(double)); + obj_len = 0; + obj_ind[0] = 0; + obj_val[0] = P->c0; + P->c0 = 0.0; + for (j = 1; j <= P->n; j++) + { if (P->col[j]->coef != 0.0) + { obj_len++; + obj_ind[obj_len] = j; + obj_val[obj_len] = P->col[j]->coef; + P->col[j]->coef = 0.0; + } + } + /* add inequality to bound the objective function, if required */ + if (!use_bound) + xprintf("Will search for ANY feasible solution\n"); + else + { xprintf("Will search only for solution not worse than %d\n", + obj_bound); + obj_row = glp_add_rows(P, 1); + glp_set_mat_row(P, obj_row, obj_len, obj_ind, obj_val); + if (P->dir == GLP_MIN) + glp_set_row_bnds(P, obj_row, + GLP_UP, 0.0, (double)obj_bound - obj_val[0]); + else if (P->dir == GLP_MAX) + glp_set_row_bnds(P, obj_row, + GLP_LO, (double)obj_bound - obj_val[0], 0.0); + else + xassert(P != P); + } + /* create preprocessor workspace */ + xprintf("Translating to CNF-SAT...\n"); + xprintf("Original problem has %d row%s, %d column%s, and %d non-z" + "ero%s\n", P->m, P->m == 1 ? "" : "s", P->n, P->n == 1 ? "" : + "s", P->nnz, P->nnz == 1 ? "" : "s"); + npp = npp_create_wksp(); + /* load the original problem into the preprocessor workspace */ + npp_load_prob(npp, P, GLP_OFF, GLP_MIP, GLP_OFF); + /* perform translation to SAT-CNF problem instance */ + ret = npp_sat_encode_prob(npp); + if (ret == 0) + ; + else if (ret == GLP_ENOPFS) + xprintf("PROBLEM HAS NO INTEGER FEASIBLE SOLUTION\n"); + else if (ret == GLP_ERANGE) + xprintf("glp_intfeas1: translation to SAT-CNF failed because o" + "f integer overflow\n"); + else + xassert(ret != ret); + if (ret != 0) + goto done; + /* build SAT-CNF problem instance and try to solve it */ + mip = glp_create_prob(); + npp_build_prob(npp, mip); + ret = glp_minisat1(mip); + /* only integer feasible solution can be postprocessed */ + if (!(mip->mip_stat == GLP_OPT || mip->mip_stat == GLP_FEAS)) + { P->mip_stat = mip->mip_stat; + goto done; + } + /* postprocess the solution found */ + npp_postprocess(npp, mip); + /* the transformed problem is no longer needed */ + glp_delete_prob(mip), mip = NULL; + /* store solution to the original problem object */ + npp_unload_sol(npp, P); + /* change the solution status to 'integer feasible' */ + P->mip_stat = GLP_FEAS; + /* check integer feasibility */ + for (i = 1; i <= P->m; i++) + { GLPROW *row; + GLPAIJ *aij; + double sum; + row = P->row[i]; + sum = 0.0; + for (aij = row->ptr; aij != NULL; aij = aij->r_next) + sum += aij->val * aij->col->mipx; + xassert(sum == row->mipx); + if (row->type == GLP_LO || row->type == GLP_DB || + row->type == GLP_FX) + xassert(sum >= row->lb); + if (row->type == GLP_UP || row->type == GLP_DB || + row->type == GLP_FX) + xassert(sum <= row->ub); + } + /* compute value of the original objective function */ + P->mip_obj = obj_val[0]; + for (k = 1; k <= obj_len; k++) + P->mip_obj += obj_val[k] * P->col[obj_ind[k]]->mipx; + xprintf("Objective value = %17.9e\n", P->mip_obj); +done: /* delete the transformed problem, if it exists */ + if (mip != NULL) + glp_delete_prob(mip); + /* delete the preprocessor workspace, if it exists */ + if (npp != NULL) + npp_delete_wksp(npp); + /* remove inequality used to bound the objective function */ + if (obj_row > 0) + { int ind[1+1]; + ind[1] = obj_row; + glp_del_rows(P, 1, ind); + } + /* restore the original objective function */ + if (obj_ind != NULL) + { P->c0 = obj_val[0]; + for (k = 1; k <= obj_len; k++) + P->col[obj_ind[k]]->coef = obj_val[k]; + xfree(obj_ind); + xfree(obj_val); + } + return ret; +} + +/* eof */ |