summaryrefslogtreecommitdiff
path: root/glpk-5.0/examples/wolfra6d.lp
diff options
context:
space:
mode:
authorPasha <pasha@member.fsf.org>2023-01-27 00:54:07 +0000
committerPasha <pasha@member.fsf.org>2023-01-27 00:54:07 +0000
commitef800d4ffafdbde7d7a172ad73bd984b1695c138 (patch)
tree920cc189130f1e98f252283fce94851443641a6d /glpk-5.0/examples/wolfra6d.lp
parentec4ae3c2b5cb0e83fb667f14f832ea94f68ef075 (diff)
downloadoneapi-master.tar.gz
oneapi-master.tar.bz2
simplex-glpk with modified glpk for fpgaHEADmaster
Diffstat (limited to 'glpk-5.0/examples/wolfra6d.lp')
-rw-r--r--glpk-5.0/examples/wolfra6d.lp596
1 files changed, 596 insertions, 0 deletions
diff --git a/glpk-5.0/examples/wolfra6d.lp b/glpk-5.0/examples/wolfra6d.lp
new file mode 100644
index 0000000..a3437d8
--- /dev/null
+++ b/glpk-5.0/examples/wolfra6d.lp
@@ -0,0 +1,596 @@
+\* Any Wolfram elementary CA in 6D eucl. Neumann CA grid emulator generator *\
+
+\* Written and converted to *LP format by NASZVADI, Peter, 2016,2017 *\
+\* <vuk@cs.elte.hu> *\
+
+\* Standalone version; GMPL version is in wolfra6d.mod *\
+
+\* This model looks up for a subset of vertices in 6D euclyd. grid, *\
+\* which has the following properties: *\
+\* 1. each vertex' coordinate pairs' difference is at most 1 *\
+\* 2. contains the vertices in the main diagonal of the 6d space *\
+\* 3. connecting with directed graph edges from all selected vertices *\
+\* to all selected ones with greater coordinate sums with *\
+\* Hamming-distance 1, the following in-out edge numbers are *\
+\* allowed: (3,6), (1,2), (2,3), (1,2), (4,1), (3,1); according to *\
+\* the mod 6 sum of the coordinate values *\
+\* 4. Only vertices of the unit cube's with {0,1} coordinates are *\
+\* calculated, but the other cells could be obtained via shifting. *\
+\* Assume that the grid is a 6dim. cellular automaton grid with Neumann- *\
+\* -neighbourhood, now construct an outer-totalistic rule that emulates *\
+\* W110 cellular automaton on the selected vertices: *\
+\* Suppose that the 1D W110 cellspace cells are denoted with signed *\
+\* integers. Every 1D cell is assigned to (at most "6 over 2") selected *\
+\* vertices where each coordinate sums are the same with the integer *\
+\* assigned to the origin cell in the domain, they must have the same *\
+\* value. Rule-110 means that cell's value is being changed only when its *\
+\* neighbours are: (1,1,1), (1,0,1), (0,0,1), other cells remain unchanged. *\
+\* Let's denote the default cellstate with "2" in the 6D automaton, and *\
+\* the remaining 2 states with "0" and "1" respectively, which correspond *\
+\* with the states in W110. The selected vertices must be 0 or 1 of course, *\
+\* and the others are "2". *\
+\* Now, the transition rule for emulating W110 is the following: *\
+\* (x),{1,1,1,1,1,1,1,1,1,2,2,2}->(1-x), x!=2, *\
+\* (x),{1,1,1,2,2,2,2,2,2,2,2,2}->(1-x), x!=2, *\
+\* (x),{1,1,1,1,2,2,2,2,2,2,2,2}->(1-x), x!=2, *\
+\* (x),{1,1,1,1,1,2,2,2,2,2,2,2}->(1-x), x!=2, *\
+\* (1),{0,0,0,1,1,1,1,1,1,2,2,2}->(0), *\
+\* (1),{0,1,1,2,2,2,2,2,2,2,2,2}->(0), *\
+\* (1),{0,0,1,1,1,2,2,2,2,2,2,2}->(0), *\
+\* (1),{0,0,0,0,1,2,2,2,2,2,2,2}->(0), *\
+\* (1),{0,0,0,1,2,2,2,2,2,2,2,2}->(0); *\
+\* notation: (old state),{old neighbours - all permutations}->(new state) *\
+\* Other states won't change between two generations. And is known that W110 *\
+\* is Turing-complete. So there is a universal CA rule in 6+D eucl. gridS *\
+\* Result is in x****** binary variables (total 44 among the 64) *\
+
+Minimize
+ obj: x000000 +x000001 +x000010 +x000011 +x000100 +x000101 +x000110 +x000111
+ +x001000 +x001001 +x001010 +x001011 +x001100 +x001101 +x001110 +x001111
+ +x010000 +x010001 +x010010 +x010011 +x010100 +x010101 +x010110 +x010111
+ +x011000 +x011001 +x011010 +x011011 +x011100 +x011101 +x011110 +x011111
+ +x100000 +x100001 +x100010 +x100011 +x100100 +x100101 +x100110 +x100111
+ +x101000 +x101001 +x101010 +x101011 +x101100 +x101101 +x101110 +x101111
+ +x110000 +x110001 +x110010 +x110011 +x110100 +x110101 +x110110 +x110111
+ +x111000 +x111001 +x111010 +x111011 +x111100 +x111101 +x111110 +x111111
+Subject To
+ x000000 = 1
+ x111111 = 1
+ x111110 -x111101 >= 0
+ x111101 -x111011 >= 0
+ x111011 -x110111 >= 0
+ x110111 -x101111 >= 0
+ x101111 -x011111 >= 0
+ dn000000 -dn111111 = 0
+ up000000 -up111111 = 0
+ cup000000:
+ x000001 +x000010 +x000100 +x001000 +x010000 +x100000 -up000000 = 0
+ cup000001:
+ x000011 +x000101 +x001001 +x010001 +x100001 -up000001 = 0
+ cup000010:
+ x000011 +x000110 +x001010 +x010010 +x100010 -up000010 = 0
+ cup000011:
+ x000111 +x001011 +x010011 +x100011 -up000011 = 0
+ cup000100:
+ x000101 +x000110 +x001100 +x010100 +x100100 -up000100 = 0
+ cup000101:
+ x000111 +x001101 +x010101 +x100101 -up000101 = 0
+ cup000110:
+ x000111 +x001110 +x010110 +x100110 -up000110 = 0
+ cup000111:
+ x001111 +x010111 +x100111 -up000111 = 0
+ cup001000:
+ x001001 +x001010 +x001100 +x011000 +x101000 -up001000 = 0
+ cup001001:
+ x001011 +x001101 +x011001 +x101001 -up001001 = 0
+ cup001010:
+ x001011 +x001110 +x011010 +x101010 -up001010 = 0
+ cup001011:
+ x001111 +x011011 +x101011 -up001011 = 0
+ cup001100:
+ x001101 +x001110 +x011100 +x101100 -up001100 = 0
+ cup001101:
+ x001111 +x011101 +x101101 -up001101 = 0
+ cup001110:
+ x001111 +x011110 +x101110 -up001110 = 0
+ cup001111:
+ x011111 +x101111 -up001111 = 0
+ cup010000:
+ x010001 +x010010 +x010100 +x011000 +x110000 -up010000 = 0
+ cup010001:
+ x010011 +x010101 +x011001 +x110001 -up010001 = 0
+ cup010010:
+ x010011 +x010110 +x011010 +x110010 -up010010 = 0
+ cup010011:
+ x010111 +x011011 +x110011 -up010011 = 0
+ cup010100:
+ x010101 +x010110 +x011100 +x110100 -up010100 = 0
+ cup010101:
+ x010111 +x011101 +x110101 -up010101 = 0
+ cup010110:
+ x010111 +x011110 +x110110 -up010110 = 0
+ cup010111:
+ x011111 +x110111 -up010111 = 0
+ cup011000:
+ x011001 +x011010 +x011100 +x111000 -up011000 = 0
+ cup011001:
+ x011011 +x011101 +x111001 -up011001 = 0
+ cup011010:
+ x011011 +x011110 +x111010 -up011010 = 0
+ cup011011:
+ x011111 +x111011 -up011011 = 0
+ cup011100:
+ x011101 +x011110 +x111100 -up011100 = 0
+ cup011101:
+ x011111 +x111101 -up011101 = 0
+ cup011110:
+ x011111 +x111110 -up011110 = 0
+ cup011111:
+ x111111 -up011111 = 0
+ cup100000:
+ x100001 +x100010 +x100100 +x101000 +x110000 -up100000 = 0
+ cup100001:
+ x100011 +x100101 +x101001 +x110001 -up100001 = 0
+ cup100010:
+ x100011 +x100110 +x101010 +x110010 -up100010 = 0
+ cup100011:
+ x100111 +x101011 +x110011 -up100011 = 0
+ cup100100:
+ x100101 +x100110 +x101100 +x110100 -up100100 = 0
+ cup100101:
+ x100111 +x101101 +x110101 -up100101 = 0
+ cup100110:
+ x100111 +x101110 +x110110 -up100110 = 0
+ cup100111:
+ x101111 +x110111 -up100111 = 0
+ cup101000:
+ x101001 +x101010 +x101100 +x111000 -up101000 = 0
+ cup101001:
+ x101011 +x101101 +x111001 -up101001 = 0
+ cup101010:
+ x101011 +x101110 +x111010 -up101010 = 0
+ cup101011:
+ x101111 +x111011 -up101011 = 0
+ cup101100:
+ x101101 +x101110 +x111100 -up101100 = 0
+ cup101101:
+ x101111 +x111101 -up101101 = 0
+ cup101110:
+ x101111 +x111110 -up101110 = 0
+ cup101111:
+ x111111 -up101111 = 0
+ cup110000:
+ x110001 +x110010 +x110100 +x111000 -up110000 = 0
+ cup110001:
+ x110011 +x110101 +x111001 -up110001 = 0
+ cup110010:
+ x110011 +x110110 +x111010 -up110010 = 0
+ cup110011:
+ x110111 +x111011 -up110011 = 0
+ cup110100:
+ x110101 +x110110 +x111100 -up110100 = 0
+ cup110101:
+ x110111 +x111101 -up110101 = 0
+ cup110110:
+ x110111 +x111110 -up110110 = 0
+ cup110111:
+ x111111 -up110111 = 0
+ cup111000:
+ x111001 +x111010 +x111100 -up111000 = 0
+ cup111001:
+ x111011 +x111101 -up111001 = 0
+ cup111010:
+ x111011 +x111110 -up111010 = 0
+ cup111011:
+ x111111 -up111011 = 0
+ cup111100:
+ x111101 +x111110 -up111100 = 0
+ cup111101:
+ x111111 -up111101 = 0
+ cup111110:
+ x111111 -up111110 = 0
+ cdn000001:
+ x000000 -dn000001 = 0
+ cdn000010:
+ x000000 -dn000010 = 0
+ cdn000011:
+ x000001 +x000010 -dn000011 = 0
+ cdn000100:
+ x000000 -dn000100 = 0
+ cdn000101:
+ x000001 +x000100 -dn000101 = 0
+ cdn000110:
+ x000010 +x000100 -dn000110 = 0
+ cdn000111:
+ x000011 +x000101 +x000110 -dn000111 = 0
+ cdn001000:
+ x000000 -dn001000 = 0
+ cdn001001:
+ x000001 +x001000 -dn001001 = 0
+ cdn001010:
+ x000010 +x001000 -dn001010 = 0
+ cdn001011:
+ x000011 +x001001 +x001010 -dn001011 = 0
+ cdn001100:
+ x000100 +x001000 -dn001100 = 0
+ cdn001101:
+ x000101 +x001001 +x001100 -dn001101 = 0
+ cdn001110:
+ x000110 +x001010 +x001100 -dn001110 = 0
+ cdn001111:
+ x000111 +x001011 +x001101 +x001110 -dn001111 = 0
+ cdn010000:
+ x000000 -dn010000 = 0
+ cdn010001:
+ x000001 +x010000 -dn010001 = 0
+ cdn010010:
+ x000010 +x010000 -dn010010 = 0
+ cdn010011:
+ x000011 +x010001 +x010010 -dn010011 = 0
+ cdn010100:
+ x000100 +x010000 -dn010100 = 0
+ cdn010101:
+ x000101 +x010001 +x010100 -dn010101 = 0
+ cdn010110:
+ x000110 +x010010 +x010100 -dn010110 = 0
+ cdn010111:
+ x000111 +x010011 +x010101 +x010110 -dn010111 = 0
+ cdn011000:
+ x001000 +x010000 -dn011000 = 0
+ cdn011001:
+ x001001 +x010001 +x011000 -dn011001 = 0
+ cdn011010:
+ x001010 +x010010 +x011000 -dn011010 = 0
+ cdn011011:
+ x001011 +x010011 +x011001 +x011010 -dn011011 = 0
+ cdn011100:
+ x001100 +x010100 +x011000 -dn011100 = 0
+ cdn011101:
+ x001101 +x010101 +x011001 +x011100 -dn011101 = 0
+ cdn011110:
+ x001110 +x010110 +x011010 +x011100 -dn011110 = 0
+ cdn011111:
+ x001111 +x010111 +x011011 +x011101 +x011110 -dn011111 = 0
+ cdn100000:
+ x000000 -dn100000 = 0
+ cdn100001:
+ x000001 +x100000 -dn100001 = 0
+ cdn100010:
+ x000010 +x100000 -dn100010 = 0
+ cdn100011:
+ x000011 +x100001 +x100010 -dn100011 = 0
+ cdn100100:
+ x000100 +x100000 -dn100100 = 0
+ cdn100101:
+ x000101 +x100001 +x100100 -dn100101 = 0
+ cdn100110:
+ x000110 +x100010 +x100100 -dn100110 = 0
+ cdn100111:
+ x000111 +x100011 +x100101 +x100110 -dn100111 = 0
+ cdn101000:
+ x001000 +x100000 -dn101000 = 0
+ cdn101001:
+ x001001 +x100001 +x101000 -dn101001 = 0
+ cdn101010:
+ x001010 +x100010 +x101000 -dn101010 = 0
+ cdn101011:
+ x001011 +x100011 +x101001 +x101010 -dn101011 = 0
+ cdn101100:
+ x001100 +x100100 +x101000 -dn101100 = 0
+ cdn101101:
+ x001101 +x100101 +x101001 +x101100 -dn101101 = 0
+ cdn101110:
+ x001110 +x100110 +x101010 +x101100 -dn101110 = 0
+ cdn101111:
+ x001111 +x100111 +x101011 +x101101 +x101110 -dn101111 = 0
+ cdn110000:
+ x010000 +x100000 -dn110000 = 0
+ cdn110001:
+ x010001 +x100001 +x110000 -dn110001 = 0
+ cdn110010:
+ x010010 +x100010 +x110000 -dn110010 = 0
+ cdn110011:
+ x010011 +x100011 +x110001 +x110010 -dn110011 = 0
+ cdn110100:
+ x010100 +x100100 +x110000 -dn110100 = 0
+ cdn110101:
+ x010101 +x100101 +x110001 +x110100 -dn110101 = 0
+ cdn110110:
+ x010110 +x100110 +x110010 +x110100 -dn110110 = 0
+ cdn110111:
+ x010111 +x100111 +x110011 +x110101 +x110110 -dn110111 = 0
+ cdn111000:
+ x011000 +x101000 +x110000 -dn111000 = 0
+ cdn111001:
+ x011001 +x101001 +x110001 +x111000 -dn111001 = 0
+ cdn111010:
+ x011010 +x101010 +x110010 +x111000 -dn111010 = 0
+ cdn111011:
+ x011011 +x101011 +x110011 +x111001 +x111010 -dn111011 = 0
+ cdn111100:
+ x011100 +x101100 +x110100 +x111000 -dn111100 = 0
+ cdn111101:
+ x011101 +x101101 +x110101 +x111001 +x111100 -dn111101 = 0
+ cdn111110:
+ x011110 +x101110 +x110110 +x111010 +x111100 -dn111110 = 0
+ cdn111111:
+ x011111 +x101111 +x110111 +x111011 +x111101 +x111110 -dn111111 = 0
+ up000000 -6 x000000 >= 0
+ up000000 +64 x000000 <= 70
+ up000001 -2 x000001 >= 0
+ up000001 +64 x000001 <= 66
+ up000010 -2 x000010 >= 0
+ up000010 +64 x000010 <= 66
+ up000011 -3 x000011 >= 0
+ up000011 +64 x000011 <= 67
+ up000100 -2 x000100 >= 0
+ up000100 +64 x000100 <= 66
+ up000101 -3 x000101 >= 0
+ up000101 +64 x000101 <= 67
+ up000110 -3 x000110 >= 0
+ up000110 +64 x000110 <= 67
+ up000111 -2 x000111 >= 0
+ up000111 +64 x000111 <= 66
+ up001000 -2 x001000 >= 0
+ up001000 +64 x001000 <= 66
+ up001001 -3 x001001 >= 0
+ up001001 +64 x001001 <= 67
+ up001010 -3 x001010 >= 0
+ up001010 +64 x001010 <= 67
+ up001011 -2 x001011 >= 0
+ up001011 +64 x001011 <= 66
+ up001100 -3 x001100 >= 0
+ up001100 +64 x001100 <= 67
+ up001101 -2 x001101 >= 0
+ up001101 +64 x001101 <= 66
+ up001110 -2 x001110 >= 0
+ up001110 +64 x001110 <= 66
+ up001111 -1 x001111 >= 0
+ up001111 +64 x001111 <= 65
+ up010000 -2 x010000 >= 0
+ up010000 +64 x010000 <= 66
+ up010001 -3 x010001 >= 0
+ up010001 +64 x010001 <= 67
+ up010010 -3 x010010 >= 0
+ up010010 +64 x010010 <= 67
+ up010011 -2 x010011 >= 0
+ up010011 +64 x010011 <= 66
+ up010100 -3 x010100 >= 0
+ up010100 +64 x010100 <= 67
+ up010101 -2 x010101 >= 0
+ up010101 +64 x010101 <= 66
+ up010110 -2 x010110 >= 0
+ up010110 +64 x010110 <= 66
+ up010111 -1 x010111 >= 0
+ up010111 +64 x010111 <= 65
+ up011000 -3 x011000 >= 0
+ up011000 +64 x011000 <= 67
+ up011001 -2 x011001 >= 0
+ up011001 +64 x011001 <= 66
+ up011010 -2 x011010 >= 0
+ up011010 +64 x011010 <= 66
+ up011011 -1 x011011 >= 0
+ up011011 +64 x011011 <= 65
+ up011100 -2 x011100 >= 0
+ up011100 +64 x011100 <= 66
+ up011101 -1 x011101 >= 0
+ up011101 +64 x011101 <= 65
+ up011110 -1 x011110 >= 0
+ up011110 +64 x011110 <= 65
+ up011111 -1 x011111 >= 0
+ up011111 +64 x011111 <= 65
+ up100000 -2 x100000 >= 0
+ up100000 +64 x100000 <= 66
+ up100001 -3 x100001 >= 0
+ up100001 +64 x100001 <= 67
+ up100010 -3 x100010 >= 0
+ up100010 +64 x100010 <= 67
+ up100011 -2 x100011 >= 0
+ up100011 +64 x100011 <= 66
+ up100100 -3 x100100 >= 0
+ up100100 +64 x100100 <= 67
+ up100101 -2 x100101 >= 0
+ up100101 +64 x100101 <= 66
+ up100110 -2 x100110 >= 0
+ up100110 +64 x100110 <= 66
+ up100111 -1 x100111 >= 0
+ up100111 +64 x100111 <= 65
+ up101000 -3 x101000 >= 0
+ up101000 +64 x101000 <= 67
+ up101001 -2 x101001 >= 0
+ up101001 +64 x101001 <= 66
+ up101010 -2 x101010 >= 0
+ up101010 +64 x101010 <= 66
+ up101011 -1 x101011 >= 0
+ up101011 +64 x101011 <= 65
+ up101100 -2 x101100 >= 0
+ up101100 +64 x101100 <= 66
+ up101101 -1 x101101 >= 0
+ up101101 +64 x101101 <= 65
+ up101110 -1 x101110 >= 0
+ up101110 +64 x101110 <= 65
+ up101111 -1 x101111 >= 0
+ up101111 +64 x101111 <= 65
+ up110000 -3 x110000 >= 0
+ up110000 +64 x110000 <= 67
+ up110001 -2 x110001 >= 0
+ up110001 +64 x110001 <= 66
+ up110010 -2 x110010 >= 0
+ up110010 +64 x110010 <= 66
+ up110011 -1 x110011 >= 0
+ up110011 +64 x110011 <= 65
+ up110100 -2 x110100 >= 0
+ up110100 +64 x110100 <= 66
+ up110101 -1 x110101 >= 0
+ up110101 +64 x110101 <= 65
+ up110110 -1 x110110 >= 0
+ up110110 +64 x110110 <= 65
+ up110111 -1 x110111 >= 0
+ up110111 +64 x110111 <= 65
+ up111000 -2 x111000 >= 0
+ up111000 +64 x111000 <= 66
+ up111001 -1 x111001 >= 0
+ up111001 +64 x111001 <= 65
+ up111010 -1 x111010 >= 0
+ up111010 +64 x111010 <= 65
+ up111011 -1 x111011 >= 0
+ up111011 +64 x111011 <= 65
+ up111100 -1 x111100 >= 0
+ up111100 +64 x111100 <= 65
+ up111101 -1 x111101 >= 0
+ up111101 +64 x111101 <= 65
+ up111110 -1 x111110 >= 0
+ up111110 +64 x111110 <= 65
+ dn000001 -1 x000001 >= 0
+ dn000001 +64 x000001 <= 65
+ dn000010 -1 x000010 >= 0
+ dn000010 +64 x000010 <= 65
+ dn000011 -2 x000011 >= 0
+ dn000011 +64 x000011 <= 66
+ dn000100 -1 x000100 >= 0
+ dn000100 +64 x000100 <= 65
+ dn000101 -2 x000101 >= 0
+ dn000101 +64 x000101 <= 66
+ dn000110 -2 x000110 >= 0
+ dn000110 +64 x000110 <= 66
+ dn000111 -1 x000111 >= 0
+ dn000111 +64 x000111 <= 65
+ dn001000 -1 x001000 >= 0
+ dn001000 +64 x001000 <= 65
+ dn001001 -2 x001001 >= 0
+ dn001001 +64 x001001 <= 66
+ dn001010 -2 x001010 >= 0
+ dn001010 +64 x001010 <= 66
+ dn001011 -1 x001011 >= 0
+ dn001011 +64 x001011 <= 65
+ dn001100 -2 x001100 >= 0
+ dn001100 +64 x001100 <= 66
+ dn001101 -1 x001101 >= 0
+ dn001101 +64 x001101 <= 65
+ dn001110 -1 x001110 >= 0
+ dn001110 +64 x001110 <= 65
+ dn001111 -4 x001111 >= 0
+ dn001111 +64 x001111 <= 68
+ dn010000 -1 x010000 >= 0
+ dn010000 +64 x010000 <= 65
+ dn010001 -2 x010001 >= 0
+ dn010001 +64 x010001 <= 66
+ dn010010 -2 x010010 >= 0
+ dn010010 +64 x010010 <= 66
+ dn010011 -1 x010011 >= 0
+ dn010011 +64 x010011 <= 65
+ dn010100 -2 x010100 >= 0
+ dn010100 +64 x010100 <= 66
+ dn010101 -1 x010101 >= 0
+ dn010101 +64 x010101 <= 65
+ dn010110 -1 x010110 >= 0
+ dn010110 +64 x010110 <= 65
+ dn010111 -4 x010111 >= 0
+ dn010111 +64 x010111 <= 68
+ dn011000 -2 x011000 >= 0
+ dn011000 +64 x011000 <= 66
+ dn011001 -1 x011001 >= 0
+ dn011001 +64 x011001 <= 65
+ dn011010 -1 x011010 >= 0
+ dn011010 +64 x011010 <= 65
+ dn011011 -4 x011011 >= 0
+ dn011011 +64 x011011 <= 68
+ dn011100 -1 x011100 >= 0
+ dn011100 +64 x011100 <= 65
+ dn011101 -4 x011101 >= 0
+ dn011101 +64 x011101 <= 68
+ dn011110 -4 x011110 >= 0
+ dn011110 +64 x011110 <= 68
+ dn011111 -3 x011111 >= 0
+ dn011111 +64 x011111 <= 67
+ dn100000 -1 x100000 >= 0
+ dn100000 +64 x100000 <= 65
+ dn100001 -2 x100001 >= 0
+ dn100001 +64 x100001 <= 66
+ dn100010 -2 x100010 >= 0
+ dn100010 +64 x100010 <= 66
+ dn100011 -1 x100011 >= 0
+ dn100011 +64 x100011 <= 65
+ dn100100 -2 x100100 >= 0
+ dn100100 +64 x100100 <= 66
+ dn100101 -1 x100101 >= 0
+ dn100101 +64 x100101 <= 65
+ dn100110 -1 x100110 >= 0
+ dn100110 +64 x100110 <= 65
+ dn100111 -4 x100111 >= 0
+ dn100111 +64 x100111 <= 68
+ dn101000 -2 x101000 >= 0
+ dn101000 +64 x101000 <= 66
+ dn101001 -1 x101001 >= 0
+ dn101001 +64 x101001 <= 65
+ dn101010 -1 x101010 >= 0
+ dn101010 +64 x101010 <= 65
+ dn101011 -4 x101011 >= 0
+ dn101011 +64 x101011 <= 68
+ dn101100 -1 x101100 >= 0
+ dn101100 +64 x101100 <= 65
+ dn101101 -4 x101101 >= 0
+ dn101101 +64 x101101 <= 68
+ dn101110 -4 x101110 >= 0
+ dn101110 +64 x101110 <= 68
+ dn101111 -3 x101111 >= 0
+ dn101111 +64 x101111 <= 67
+ dn110000 -2 x110000 >= 0
+ dn110000 +64 x110000 <= 66
+ dn110001 -1 x110001 >= 0
+ dn110001 +64 x110001 <= 65
+ dn110010 -1 x110010 >= 0
+ dn110010 +64 x110010 <= 65
+ dn110011 -4 x110011 >= 0
+ dn110011 +64 x110011 <= 68
+ dn110100 -1 x110100 >= 0
+ dn110100 +64 x110100 <= 65
+ dn110101 -4 x110101 >= 0
+ dn110101 +64 x110101 <= 68
+ dn110110 -4 x110110 >= 0
+ dn110110 +64 x110110 <= 68
+ dn110111 -3 x110111 >= 0
+ dn110111 +64 x110111 <= 67
+ dn111000 -1 x111000 >= 0
+ dn111000 +64 x111000 <= 65
+ dn111001 -4 x111001 >= 0
+ dn111001 +64 x111001 <= 68
+ dn111010 -4 x111010 >= 0
+ dn111010 +64 x111010 <= 68
+ dn111011 -3 x111011 >= 0
+ dn111011 +64 x111011 <= 67
+ dn111100 -4 x111100 >= 0
+ dn111100 +64 x111100 <= 68
+ dn111101 -3 x111101 >= 0
+ dn111101 +64 x111101 <= 67
+ dn111110 -3 x111110 >= 0
+ dn111110 +64 x111110 <= 67
+ dn111111 -3 x111111 >= 0
+ dn111111 +64 x111111 <= 67
+binary
+ x000000 x000001 x000010 x000011 x000100 x000101 x000110 x000111
+ x001000 x001001 x001010 x001011 x001100 x001101 x001110 x001111
+ x010000 x010001 x010010 x010011 x010100 x010101 x010110 x010111
+ x011000 x011001 x011010 x011011 x011100 x011101 x011110 x011111
+ x100000 x100001 x100010 x100011 x100100 x100101 x100110 x100111
+ x101000 x101001 x101010 x101011 x101100 x101101 x101110 x101111
+ x110000 x110001 x110010 x110011 x110100 x110101 x110110 x110111
+ x111000 x111001 x111010 x111011 x111100 x111101 x111110 x111111
+integer
+ dn000000 up000000 dn000001 up000001 dn000010 up000010 dn000011 up000011
+ dn000100 up000100 dn000101 up000101 dn000110 up000110 dn000111 up000111
+ dn001000 up001000 dn001001 up001001 dn001010 up001010 dn001011 up001011
+ dn001100 up001100 dn001101 up001101 dn001110 up001110 dn001111 up001111
+ dn010000 up010000 dn010001 up010001 dn010010 up010010 dn010011 up010011
+ dn010100 up010100 dn010101 up010101 dn010110 up010110 dn010111 up010111
+ dn011000 up011000 dn011001 up011001 dn011010 up011010 dn011011 up011011
+ dn011100 up011100 dn011101 up011101 dn011110 up011110 dn011111 up011111
+ dn100000 up100000 dn100001 up100001 dn100010 up100010 dn100011 up100011
+ dn100100 up100100 dn100101 up100101 dn100110 up100110 dn100111 up100111
+ dn101000 up101000 dn101001 up101001 dn101010 up101010 dn101011 up101011
+ dn101100 up101100 dn101101 up101101 dn101110 up101110 dn101111 up101111
+ dn110000 up110000 dn110001 up110001 dn110010 up110010 dn110011 up110011
+ dn110100 up110100 dn110101 up110101 dn110110 up110110 dn110111 up110111
+ dn111000 up111000 dn111001 up111001 dn111010 up111010 dn111011 up111011
+ dn111100 up111100 dn111101 up111101 dn111110 up111110 dn111111 up111111
+End