diff options
Diffstat (limited to 'glpk-5.0/examples/wolfra6d.lp')
-rw-r--r-- | glpk-5.0/examples/wolfra6d.lp | 596 |
1 files changed, 596 insertions, 0 deletions
diff --git a/glpk-5.0/examples/wolfra6d.lp b/glpk-5.0/examples/wolfra6d.lp new file mode 100644 index 0000000..a3437d8 --- /dev/null +++ b/glpk-5.0/examples/wolfra6d.lp @@ -0,0 +1,596 @@ +\* Any Wolfram elementary CA in 6D eucl. Neumann CA grid emulator generator *\ + +\* Written and converted to *LP format by NASZVADI, Peter, 2016,2017 *\ +\* <vuk@cs.elte.hu> *\ + +\* Standalone version; GMPL version is in wolfra6d.mod *\ + +\* This model looks up for a subset of vertices in 6D euclyd. grid, *\ +\* which has the following properties: *\ +\* 1. each vertex' coordinate pairs' difference is at most 1 *\ +\* 2. contains the vertices in the main diagonal of the 6d space *\ +\* 3. connecting with directed graph edges from all selected vertices *\ +\* to all selected ones with greater coordinate sums with *\ +\* Hamming-distance 1, the following in-out edge numbers are *\ +\* allowed: (3,6), (1,2), (2,3), (1,2), (4,1), (3,1); according to *\ +\* the mod 6 sum of the coordinate values *\ +\* 4. Only vertices of the unit cube's with {0,1} coordinates are *\ +\* calculated, but the other cells could be obtained via shifting. *\ +\* Assume that the grid is a 6dim. cellular automaton grid with Neumann- *\ +\* -neighbourhood, now construct an outer-totalistic rule that emulates *\ +\* W110 cellular automaton on the selected vertices: *\ +\* Suppose that the 1D W110 cellspace cells are denoted with signed *\ +\* integers. Every 1D cell is assigned to (at most "6 over 2") selected *\ +\* vertices where each coordinate sums are the same with the integer *\ +\* assigned to the origin cell in the domain, they must have the same *\ +\* value. Rule-110 means that cell's value is being changed only when its *\ +\* neighbours are: (1,1,1), (1,0,1), (0,0,1), other cells remain unchanged. *\ +\* Let's denote the default cellstate with "2" in the 6D automaton, and *\ +\* the remaining 2 states with "0" and "1" respectively, which correspond *\ +\* with the states in W110. The selected vertices must be 0 or 1 of course, *\ +\* and the others are "2". *\ +\* Now, the transition rule for emulating W110 is the following: *\ +\* (x),{1,1,1,1,1,1,1,1,1,2,2,2}->(1-x), x!=2, *\ +\* (x),{1,1,1,2,2,2,2,2,2,2,2,2}->(1-x), x!=2, *\ +\* (x),{1,1,1,1,2,2,2,2,2,2,2,2}->(1-x), x!=2, *\ +\* (x),{1,1,1,1,1,2,2,2,2,2,2,2}->(1-x), x!=2, *\ +\* (1),{0,0,0,1,1,1,1,1,1,2,2,2}->(0), *\ +\* (1),{0,1,1,2,2,2,2,2,2,2,2,2}->(0), *\ +\* (1),{0,0,1,1,1,2,2,2,2,2,2,2}->(0), *\ +\* (1),{0,0,0,0,1,2,2,2,2,2,2,2}->(0), *\ +\* (1),{0,0,0,1,2,2,2,2,2,2,2,2}->(0); *\ +\* notation: (old state),{old neighbours - all permutations}->(new state) *\ +\* Other states won't change between two generations. And is known that W110 *\ +\* is Turing-complete. So there is a universal CA rule in 6+D eucl. gridS *\ +\* Result is in x****** binary variables (total 44 among the 64) *\ + +Minimize + obj: x000000 +x000001 +x000010 +x000011 +x000100 +x000101 +x000110 +x000111 + +x001000 +x001001 +x001010 +x001011 +x001100 +x001101 +x001110 +x001111 + +x010000 +x010001 +x010010 +x010011 +x010100 +x010101 +x010110 +x010111 + +x011000 +x011001 +x011010 +x011011 +x011100 +x011101 +x011110 +x011111 + +x100000 +x100001 +x100010 +x100011 +x100100 +x100101 +x100110 +x100111 + +x101000 +x101001 +x101010 +x101011 +x101100 +x101101 +x101110 +x101111 + +x110000 +x110001 +x110010 +x110011 +x110100 +x110101 +x110110 +x110111 + +x111000 +x111001 +x111010 +x111011 +x111100 +x111101 +x111110 +x111111 +Subject To + x000000 = 1 + x111111 = 1 + x111110 -x111101 >= 0 + x111101 -x111011 >= 0 + x111011 -x110111 >= 0 + x110111 -x101111 >= 0 + x101111 -x011111 >= 0 + dn000000 -dn111111 = 0 + up000000 -up111111 = 0 + cup000000: + x000001 +x000010 +x000100 +x001000 +x010000 +x100000 -up000000 = 0 + cup000001: + x000011 +x000101 +x001001 +x010001 +x100001 -up000001 = 0 + cup000010: + x000011 +x000110 +x001010 +x010010 +x100010 -up000010 = 0 + cup000011: + x000111 +x001011 +x010011 +x100011 -up000011 = 0 + cup000100: + x000101 +x000110 +x001100 +x010100 +x100100 -up000100 = 0 + cup000101: + x000111 +x001101 +x010101 +x100101 -up000101 = 0 + cup000110: + x000111 +x001110 +x010110 +x100110 -up000110 = 0 + cup000111: + x001111 +x010111 +x100111 -up000111 = 0 + cup001000: + x001001 +x001010 +x001100 +x011000 +x101000 -up001000 = 0 + cup001001: + x001011 +x001101 +x011001 +x101001 -up001001 = 0 + cup001010: + x001011 +x001110 +x011010 +x101010 -up001010 = 0 + cup001011: + x001111 +x011011 +x101011 -up001011 = 0 + cup001100: + x001101 +x001110 +x011100 +x101100 -up001100 = 0 + cup001101: + x001111 +x011101 +x101101 -up001101 = 0 + cup001110: + x001111 +x011110 +x101110 -up001110 = 0 + cup001111: + x011111 +x101111 -up001111 = 0 + cup010000: + x010001 +x010010 +x010100 +x011000 +x110000 -up010000 = 0 + cup010001: + x010011 +x010101 +x011001 +x110001 -up010001 = 0 + cup010010: + x010011 +x010110 +x011010 +x110010 -up010010 = 0 + cup010011: + x010111 +x011011 +x110011 -up010011 = 0 + cup010100: + x010101 +x010110 +x011100 +x110100 -up010100 = 0 + cup010101: + x010111 +x011101 +x110101 -up010101 = 0 + cup010110: + x010111 +x011110 +x110110 -up010110 = 0 + cup010111: + x011111 +x110111 -up010111 = 0 + cup011000: + x011001 +x011010 +x011100 +x111000 -up011000 = 0 + cup011001: + x011011 +x011101 +x111001 -up011001 = 0 + cup011010: + x011011 +x011110 +x111010 -up011010 = 0 + cup011011: + x011111 +x111011 -up011011 = 0 + cup011100: + x011101 +x011110 +x111100 -up011100 = 0 + cup011101: + x011111 +x111101 -up011101 = 0 + cup011110: + x011111 +x111110 -up011110 = 0 + cup011111: + x111111 -up011111 = 0 + cup100000: + x100001 +x100010 +x100100 +x101000 +x110000 -up100000 = 0 + cup100001: + x100011 +x100101 +x101001 +x110001 -up100001 = 0 + cup100010: + x100011 +x100110 +x101010 +x110010 -up100010 = 0 + cup100011: + x100111 +x101011 +x110011 -up100011 = 0 + cup100100: + x100101 +x100110 +x101100 +x110100 -up100100 = 0 + cup100101: + x100111 +x101101 +x110101 -up100101 = 0 + cup100110: + x100111 +x101110 +x110110 -up100110 = 0 + cup100111: + x101111 +x110111 -up100111 = 0 + cup101000: + x101001 +x101010 +x101100 +x111000 -up101000 = 0 + cup101001: + x101011 +x101101 +x111001 -up101001 = 0 + cup101010: + x101011 +x101110 +x111010 -up101010 = 0 + cup101011: + x101111 +x111011 -up101011 = 0 + cup101100: + x101101 +x101110 +x111100 -up101100 = 0 + cup101101: + x101111 +x111101 -up101101 = 0 + cup101110: + x101111 +x111110 -up101110 = 0 + cup101111: + x111111 -up101111 = 0 + cup110000: + x110001 +x110010 +x110100 +x111000 -up110000 = 0 + cup110001: + x110011 +x110101 +x111001 -up110001 = 0 + cup110010: + x110011 +x110110 +x111010 -up110010 = 0 + cup110011: + x110111 +x111011 -up110011 = 0 + cup110100: + x110101 +x110110 +x111100 -up110100 = 0 + cup110101: + x110111 +x111101 -up110101 = 0 + cup110110: + x110111 +x111110 -up110110 = 0 + cup110111: + x111111 -up110111 = 0 + cup111000: + x111001 +x111010 +x111100 -up111000 = 0 + cup111001: + x111011 +x111101 -up111001 = 0 + cup111010: + x111011 +x111110 -up111010 = 0 + cup111011: + x111111 -up111011 = 0 + cup111100: + x111101 +x111110 -up111100 = 0 + cup111101: + x111111 -up111101 = 0 + cup111110: + x111111 -up111110 = 0 + cdn000001: + x000000 -dn000001 = 0 + cdn000010: + x000000 -dn000010 = 0 + cdn000011: + x000001 +x000010 -dn000011 = 0 + cdn000100: + x000000 -dn000100 = 0 + cdn000101: + x000001 +x000100 -dn000101 = 0 + cdn000110: + x000010 +x000100 -dn000110 = 0 + cdn000111: + x000011 +x000101 +x000110 -dn000111 = 0 + cdn001000: + x000000 -dn001000 = 0 + cdn001001: + x000001 +x001000 -dn001001 = 0 + cdn001010: + x000010 +x001000 -dn001010 = 0 + cdn001011: + x000011 +x001001 +x001010 -dn001011 = 0 + cdn001100: + x000100 +x001000 -dn001100 = 0 + cdn001101: + x000101 +x001001 +x001100 -dn001101 = 0 + cdn001110: + x000110 +x001010 +x001100 -dn001110 = 0 + cdn001111: + x000111 +x001011 +x001101 +x001110 -dn001111 = 0 + cdn010000: + x000000 -dn010000 = 0 + cdn010001: + x000001 +x010000 -dn010001 = 0 + cdn010010: + x000010 +x010000 -dn010010 = 0 + cdn010011: + x000011 +x010001 +x010010 -dn010011 = 0 + cdn010100: + x000100 +x010000 -dn010100 = 0 + cdn010101: + x000101 +x010001 +x010100 -dn010101 = 0 + cdn010110: + x000110 +x010010 +x010100 -dn010110 = 0 + cdn010111: + x000111 +x010011 +x010101 +x010110 -dn010111 = 0 + cdn011000: + x001000 +x010000 -dn011000 = 0 + cdn011001: + x001001 +x010001 +x011000 -dn011001 = 0 + cdn011010: + x001010 +x010010 +x011000 -dn011010 = 0 + cdn011011: + x001011 +x010011 +x011001 +x011010 -dn011011 = 0 + cdn011100: + x001100 +x010100 +x011000 -dn011100 = 0 + cdn011101: + x001101 +x010101 +x011001 +x011100 -dn011101 = 0 + cdn011110: + x001110 +x010110 +x011010 +x011100 -dn011110 = 0 + cdn011111: + x001111 +x010111 +x011011 +x011101 +x011110 -dn011111 = 0 + cdn100000: + x000000 -dn100000 = 0 + cdn100001: + x000001 +x100000 -dn100001 = 0 + cdn100010: + x000010 +x100000 -dn100010 = 0 + cdn100011: + x000011 +x100001 +x100010 -dn100011 = 0 + cdn100100: + x000100 +x100000 -dn100100 = 0 + cdn100101: + x000101 +x100001 +x100100 -dn100101 = 0 + cdn100110: + x000110 +x100010 +x100100 -dn100110 = 0 + cdn100111: + x000111 +x100011 +x100101 +x100110 -dn100111 = 0 + cdn101000: + x001000 +x100000 -dn101000 = 0 + cdn101001: + x001001 +x100001 +x101000 -dn101001 = 0 + cdn101010: + x001010 +x100010 +x101000 -dn101010 = 0 + cdn101011: + x001011 +x100011 +x101001 +x101010 -dn101011 = 0 + cdn101100: + x001100 +x100100 +x101000 -dn101100 = 0 + cdn101101: + x001101 +x100101 +x101001 +x101100 -dn101101 = 0 + cdn101110: + x001110 +x100110 +x101010 +x101100 -dn101110 = 0 + cdn101111: + x001111 +x100111 +x101011 +x101101 +x101110 -dn101111 = 0 + cdn110000: + x010000 +x100000 -dn110000 = 0 + cdn110001: + x010001 +x100001 +x110000 -dn110001 = 0 + cdn110010: + x010010 +x100010 +x110000 -dn110010 = 0 + cdn110011: + x010011 +x100011 +x110001 +x110010 -dn110011 = 0 + cdn110100: + x010100 +x100100 +x110000 -dn110100 = 0 + cdn110101: + x010101 +x100101 +x110001 +x110100 -dn110101 = 0 + cdn110110: + x010110 +x100110 +x110010 +x110100 -dn110110 = 0 + cdn110111: + x010111 +x100111 +x110011 +x110101 +x110110 -dn110111 = 0 + cdn111000: + x011000 +x101000 +x110000 -dn111000 = 0 + cdn111001: + x011001 +x101001 +x110001 +x111000 -dn111001 = 0 + cdn111010: + x011010 +x101010 +x110010 +x111000 -dn111010 = 0 + cdn111011: + x011011 +x101011 +x110011 +x111001 +x111010 -dn111011 = 0 + cdn111100: + x011100 +x101100 +x110100 +x111000 -dn111100 = 0 + cdn111101: + x011101 +x101101 +x110101 +x111001 +x111100 -dn111101 = 0 + cdn111110: + x011110 +x101110 +x110110 +x111010 +x111100 -dn111110 = 0 + cdn111111: + x011111 +x101111 +x110111 +x111011 +x111101 +x111110 -dn111111 = 0 + up000000 -6 x000000 >= 0 + up000000 +64 x000000 <= 70 + up000001 -2 x000001 >= 0 + up000001 +64 x000001 <= 66 + up000010 -2 x000010 >= 0 + up000010 +64 x000010 <= 66 + up000011 -3 x000011 >= 0 + up000011 +64 x000011 <= 67 + up000100 -2 x000100 >= 0 + up000100 +64 x000100 <= 66 + up000101 -3 x000101 >= 0 + up000101 +64 x000101 <= 67 + up000110 -3 x000110 >= 0 + up000110 +64 x000110 <= 67 + up000111 -2 x000111 >= 0 + up000111 +64 x000111 <= 66 + up001000 -2 x001000 >= 0 + up001000 +64 x001000 <= 66 + up001001 -3 x001001 >= 0 + up001001 +64 x001001 <= 67 + up001010 -3 x001010 >= 0 + up001010 +64 x001010 <= 67 + up001011 -2 x001011 >= 0 + up001011 +64 x001011 <= 66 + up001100 -3 x001100 >= 0 + up001100 +64 x001100 <= 67 + up001101 -2 x001101 >= 0 + up001101 +64 x001101 <= 66 + up001110 -2 x001110 >= 0 + up001110 +64 x001110 <= 66 + up001111 -1 x001111 >= 0 + up001111 +64 x001111 <= 65 + up010000 -2 x010000 >= 0 + up010000 +64 x010000 <= 66 + up010001 -3 x010001 >= 0 + up010001 +64 x010001 <= 67 + up010010 -3 x010010 >= 0 + up010010 +64 x010010 <= 67 + up010011 -2 x010011 >= 0 + up010011 +64 x010011 <= 66 + up010100 -3 x010100 >= 0 + up010100 +64 x010100 <= 67 + up010101 -2 x010101 >= 0 + up010101 +64 x010101 <= 66 + up010110 -2 x010110 >= 0 + up010110 +64 x010110 <= 66 + up010111 -1 x010111 >= 0 + up010111 +64 x010111 <= 65 + up011000 -3 x011000 >= 0 + up011000 +64 x011000 <= 67 + up011001 -2 x011001 >= 0 + up011001 +64 x011001 <= 66 + up011010 -2 x011010 >= 0 + up011010 +64 x011010 <= 66 + up011011 -1 x011011 >= 0 + up011011 +64 x011011 <= 65 + up011100 -2 x011100 >= 0 + up011100 +64 x011100 <= 66 + up011101 -1 x011101 >= 0 + up011101 +64 x011101 <= 65 + up011110 -1 x011110 >= 0 + up011110 +64 x011110 <= 65 + up011111 -1 x011111 >= 0 + up011111 +64 x011111 <= 65 + up100000 -2 x100000 >= 0 + up100000 +64 x100000 <= 66 + up100001 -3 x100001 >= 0 + up100001 +64 x100001 <= 67 + up100010 -3 x100010 >= 0 + up100010 +64 x100010 <= 67 + up100011 -2 x100011 >= 0 + up100011 +64 x100011 <= 66 + up100100 -3 x100100 >= 0 + up100100 +64 x100100 <= 67 + up100101 -2 x100101 >= 0 + up100101 +64 x100101 <= 66 + up100110 -2 x100110 >= 0 + up100110 +64 x100110 <= 66 + up100111 -1 x100111 >= 0 + up100111 +64 x100111 <= 65 + up101000 -3 x101000 >= 0 + up101000 +64 x101000 <= 67 + up101001 -2 x101001 >= 0 + up101001 +64 x101001 <= 66 + up101010 -2 x101010 >= 0 + up101010 +64 x101010 <= 66 + up101011 -1 x101011 >= 0 + up101011 +64 x101011 <= 65 + up101100 -2 x101100 >= 0 + up101100 +64 x101100 <= 66 + up101101 -1 x101101 >= 0 + up101101 +64 x101101 <= 65 + up101110 -1 x101110 >= 0 + up101110 +64 x101110 <= 65 + up101111 -1 x101111 >= 0 + up101111 +64 x101111 <= 65 + up110000 -3 x110000 >= 0 + up110000 +64 x110000 <= 67 + up110001 -2 x110001 >= 0 + up110001 +64 x110001 <= 66 + up110010 -2 x110010 >= 0 + up110010 +64 x110010 <= 66 + up110011 -1 x110011 >= 0 + up110011 +64 x110011 <= 65 + up110100 -2 x110100 >= 0 + up110100 +64 x110100 <= 66 + up110101 -1 x110101 >= 0 + up110101 +64 x110101 <= 65 + up110110 -1 x110110 >= 0 + up110110 +64 x110110 <= 65 + up110111 -1 x110111 >= 0 + up110111 +64 x110111 <= 65 + up111000 -2 x111000 >= 0 + up111000 +64 x111000 <= 66 + up111001 -1 x111001 >= 0 + up111001 +64 x111001 <= 65 + up111010 -1 x111010 >= 0 + up111010 +64 x111010 <= 65 + up111011 -1 x111011 >= 0 + up111011 +64 x111011 <= 65 + up111100 -1 x111100 >= 0 + up111100 +64 x111100 <= 65 + up111101 -1 x111101 >= 0 + up111101 +64 x111101 <= 65 + up111110 -1 x111110 >= 0 + up111110 +64 x111110 <= 65 + dn000001 -1 x000001 >= 0 + dn000001 +64 x000001 <= 65 + dn000010 -1 x000010 >= 0 + dn000010 +64 x000010 <= 65 + dn000011 -2 x000011 >= 0 + dn000011 +64 x000011 <= 66 + dn000100 -1 x000100 >= 0 + dn000100 +64 x000100 <= 65 + dn000101 -2 x000101 >= 0 + dn000101 +64 x000101 <= 66 + dn000110 -2 x000110 >= 0 + dn000110 +64 x000110 <= 66 + dn000111 -1 x000111 >= 0 + dn000111 +64 x000111 <= 65 + dn001000 -1 x001000 >= 0 + dn001000 +64 x001000 <= 65 + dn001001 -2 x001001 >= 0 + dn001001 +64 x001001 <= 66 + dn001010 -2 x001010 >= 0 + dn001010 +64 x001010 <= 66 + dn001011 -1 x001011 >= 0 + dn001011 +64 x001011 <= 65 + dn001100 -2 x001100 >= 0 + dn001100 +64 x001100 <= 66 + dn001101 -1 x001101 >= 0 + dn001101 +64 x001101 <= 65 + dn001110 -1 x001110 >= 0 + dn001110 +64 x001110 <= 65 + dn001111 -4 x001111 >= 0 + dn001111 +64 x001111 <= 68 + dn010000 -1 x010000 >= 0 + dn010000 +64 x010000 <= 65 + dn010001 -2 x010001 >= 0 + dn010001 +64 x010001 <= 66 + dn010010 -2 x010010 >= 0 + dn010010 +64 x010010 <= 66 + dn010011 -1 x010011 >= 0 + dn010011 +64 x010011 <= 65 + dn010100 -2 x010100 >= 0 + dn010100 +64 x010100 <= 66 + dn010101 -1 x010101 >= 0 + dn010101 +64 x010101 <= 65 + dn010110 -1 x010110 >= 0 + dn010110 +64 x010110 <= 65 + dn010111 -4 x010111 >= 0 + dn010111 +64 x010111 <= 68 + dn011000 -2 x011000 >= 0 + dn011000 +64 x011000 <= 66 + dn011001 -1 x011001 >= 0 + dn011001 +64 x011001 <= 65 + dn011010 -1 x011010 >= 0 + dn011010 +64 x011010 <= 65 + dn011011 -4 x011011 >= 0 + dn011011 +64 x011011 <= 68 + dn011100 -1 x011100 >= 0 + dn011100 +64 x011100 <= 65 + dn011101 -4 x011101 >= 0 + dn011101 +64 x011101 <= 68 + dn011110 -4 x011110 >= 0 + dn011110 +64 x011110 <= 68 + dn011111 -3 x011111 >= 0 + dn011111 +64 x011111 <= 67 + dn100000 -1 x100000 >= 0 + dn100000 +64 x100000 <= 65 + dn100001 -2 x100001 >= 0 + dn100001 +64 x100001 <= 66 + dn100010 -2 x100010 >= 0 + dn100010 +64 x100010 <= 66 + dn100011 -1 x100011 >= 0 + dn100011 +64 x100011 <= 65 + dn100100 -2 x100100 >= 0 + dn100100 +64 x100100 <= 66 + dn100101 -1 x100101 >= 0 + dn100101 +64 x100101 <= 65 + dn100110 -1 x100110 >= 0 + dn100110 +64 x100110 <= 65 + dn100111 -4 x100111 >= 0 + dn100111 +64 x100111 <= 68 + dn101000 -2 x101000 >= 0 + dn101000 +64 x101000 <= 66 + dn101001 -1 x101001 >= 0 + dn101001 +64 x101001 <= 65 + dn101010 -1 x101010 >= 0 + dn101010 +64 x101010 <= 65 + dn101011 -4 x101011 >= 0 + dn101011 +64 x101011 <= 68 + dn101100 -1 x101100 >= 0 + dn101100 +64 x101100 <= 65 + dn101101 -4 x101101 >= 0 + dn101101 +64 x101101 <= 68 + dn101110 -4 x101110 >= 0 + dn101110 +64 x101110 <= 68 + dn101111 -3 x101111 >= 0 + dn101111 +64 x101111 <= 67 + dn110000 -2 x110000 >= 0 + dn110000 +64 x110000 <= 66 + dn110001 -1 x110001 >= 0 + dn110001 +64 x110001 <= 65 + dn110010 -1 x110010 >= 0 + dn110010 +64 x110010 <= 65 + dn110011 -4 x110011 >= 0 + dn110011 +64 x110011 <= 68 + dn110100 -1 x110100 >= 0 + dn110100 +64 x110100 <= 65 + dn110101 -4 x110101 >= 0 + dn110101 +64 x110101 <= 68 + dn110110 -4 x110110 >= 0 + dn110110 +64 x110110 <= 68 + dn110111 -3 x110111 >= 0 + dn110111 +64 x110111 <= 67 + dn111000 -1 x111000 >= 0 + dn111000 +64 x111000 <= 65 + dn111001 -4 x111001 >= 0 + dn111001 +64 x111001 <= 68 + dn111010 -4 x111010 >= 0 + dn111010 +64 x111010 <= 68 + dn111011 -3 x111011 >= 0 + dn111011 +64 x111011 <= 67 + dn111100 -4 x111100 >= 0 + dn111100 +64 x111100 <= 68 + dn111101 -3 x111101 >= 0 + dn111101 +64 x111101 <= 67 + dn111110 -3 x111110 >= 0 + dn111110 +64 x111110 <= 67 + dn111111 -3 x111111 >= 0 + dn111111 +64 x111111 <= 67 +binary + x000000 x000001 x000010 x000011 x000100 x000101 x000110 x000111 + x001000 x001001 x001010 x001011 x001100 x001101 x001110 x001111 + x010000 x010001 x010010 x010011 x010100 x010101 x010110 x010111 + x011000 x011001 x011010 x011011 x011100 x011101 x011110 x011111 + x100000 x100001 x100010 x100011 x100100 x100101 x100110 x100111 + x101000 x101001 x101010 x101011 x101100 x101101 x101110 x101111 + x110000 x110001 x110010 x110011 x110100 x110101 x110110 x110111 + x111000 x111001 x111010 x111011 x111100 x111101 x111110 x111111 +integer + dn000000 up000000 dn000001 up000001 dn000010 up000010 dn000011 up000011 + dn000100 up000100 dn000101 up000101 dn000110 up000110 dn000111 up000111 + dn001000 up001000 dn001001 up001001 dn001010 up001010 dn001011 up001011 + dn001100 up001100 dn001101 up001101 dn001110 up001110 dn001111 up001111 + dn010000 up010000 dn010001 up010001 dn010010 up010010 dn010011 up010011 + dn010100 up010100 dn010101 up010101 dn010110 up010110 dn010111 up010111 + dn011000 up011000 dn011001 up011001 dn011010 up011010 dn011011 up011011 + dn011100 up011100 dn011101 up011101 dn011110 up011110 dn011111 up011111 + dn100000 up100000 dn100001 up100001 dn100010 up100010 dn100011 up100011 + dn100100 up100100 dn100101 up100101 dn100110 up100110 dn100111 up100111 + dn101000 up101000 dn101001 up101001 dn101010 up101010 dn101011 up101011 + dn101100 up101100 dn101101 up101101 dn101110 up101110 dn101111 up101111 + dn110000 up110000 dn110001 up110001 dn110010 up110010 dn110011 up110011 + dn110100 up110100 dn110101 up110101 dn110110 up110110 dn110111 up110111 + dn111000 up111000 dn111001 up111001 dn111010 up111010 dn111011 up111011 + dn111100 up111100 dn111101 up111101 dn111110 up111110 dn111111 up111111 +End |