summaryrefslogtreecommitdiff
path: root/glpk-5.0/examples/toto.mod
diff options
context:
space:
mode:
Diffstat (limited to 'glpk-5.0/examples/toto.mod')
-rw-r--r--glpk-5.0/examples/toto.mod135
1 files changed, 135 insertions, 0 deletions
diff --git a/glpk-5.0/examples/toto.mod b/glpk-5.0/examples/toto.mod
new file mode 100644
index 0000000..6b4318e
--- /dev/null
+++ b/glpk-5.0/examples/toto.mod
@@ -0,0 +1,135 @@
+/* Covering code generator, especially for football pool systems */
+
+/* Written and converted to GNU MathProg by NASZVADI, Peter, 199x-2017
+ <vuk@cs.elte.hu> */
+
+/*
+ Looks up for minimal covering codes in the specified Hamming-space.
+ Without specifying model data, by default it looks up for covering
+ for a mixed covering code in Hamming-space {X, 1, 2, 3}*{X, 1}^4
+ with one layer.
+
+ Hamming space is a set of finite words with all the same length over
+ a finite alphabet: the space could be decomposed to Cartesian
+ products of subsets of the alphabet, e.g. the first letter of an
+ element can be chosen from a 2-element set, the next from 6 letters,
+ and so on.
+
+ There is a natural metric function in these spaces: the
+ Hamming-distance (hence the name, from now referred as: distance).
+ The distance of two (equal-length) words is the number of different
+ letter pairs in the corresponding positions.
+
+ Covering Hamming-spaces with minimal number of spheres with given
+ radius - usually difficult problem excluding special cases.
+
+ Relationship with sports:
+ Football pool system in Hungarian: "Toto'kulcs", so Toto, totogol and
+ other football pool systems are usually need mixed ternary/binary
+ code coverings in order to minimize loss of the gambler.
+
+ See more at:
+ https://en.wikipedia.org/wiki/Covering_code
+
+ A tricky workaround is used:
+ floor(), abs() and cosine() magic are used at 'coverings' constraints,
+ because GMPL lacks proper boolean<->integer evaluation/casting.
+*/
+
+param ArgNum1, >= 1, default 1;
+param ArgNum2, >= 1, default 1;
+param ArgNum3, >= 1, default 1;
+param ArgNum4, >= 1, default 1;
+param ArgNum5, >= 1, default 1;
+param ArgNum6, >= 1, default 1;
+param ArgNum7, >= 1, default 1;
+param ArgNum8, >= 1, default 1;
+param ArgNum9, >= 1, default 1;
+param ArgNum10, >= 1, default 1;
+param ArgNum11, >= 1, default 1;
+param ArgNum12, >= 1, default 1;
+param ArgNum13, >= 1, default 1;
+/* at most 13 matches' outcomes */
+
+param Radius, >= 1, default 1;
+/* covering radius */
+
+param Layer, >= 1, default 1;
+/* each point of space must be covered at least Layer times */
+
+set X := 0..ArgNum1 - 1 cross 0..ArgNum2 - 1 cross 0..ArgNum3 - 1 cross
+ 0..ArgNum4 - 1 cross 0..ArgNum5 - 1 cross 0..ArgNum6 - 1 cross
+ 0..ArgNum7 - 1 cross 0..ArgNum8 - 1 cross 0..ArgNum9 - 1 cross
+ 0..ArgNum10 - 1 cross 0..ArgNum11 - 1 cross 0..ArgNum12 - 1 cross
+ 0..ArgNum13 - 1;
+/* the Hamming-space generated by the Cartesian-products of sets
+ with elements ArgNum[n] */
+
+var x{X}, integer, >=0;
+/* denotes each point's amount of containing covering sets */
+
+var objvalue;
+
+s.t. coverings{(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13) in X}:
+ sum{(j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13) in X:
+ floor(abs(cos(i1 - j1))) + floor(abs(cos(i2 - j2))) +
+ floor(abs(cos(i3 - j3))) + floor(abs(cos(i4 - j4))) +
+ floor(abs(cos(i5 - j5))) + floor(abs(cos(i6 - j6))) +
+ floor(abs(cos(i7 - j7))) + floor(abs(cos(i8 - j8))) +
+ floor(abs(cos(i9 - j9))) + floor(abs(cos(i10 - j10))) +
+ floor(abs(cos(i11 - j11))) + floor(abs(cos(i12 - j12))) +
+ floor(abs(cos(i13 - j13))) >= 13 - Radius
+ } x[j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11, j12, j13] >= Layer;
+/* covering constraints, select at least 'Layer' amount of spheres that cover
+ (i1,i2,...) and has radius 'Radius' */
+
+s.t. oneisset: x[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] >= 1;
+/* this does not violate symmetry nor excludes important solutions but
+ boosts the solving process */
+
+s.t. objc: sum{(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13) in X}
+ x[i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13] = objvalue;
+/* the total number of pools (covering sets) */
+
+minimize obj: objvalue;
+/* Also 'objc' could be used directly instead of 'obj', but for
+ experiments, it is useful to set up additional constraints for
+ introduced objvalue variable */
+
+solve;
+
+printf 'Solution: %s\nRadius: %s\nLayer: %s\n',
+ objvalue.val, Radius, Layer;
+/* report important scalars */
+
+printf 'Selected bets:\n';
+for{(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13) in X:
+ x[i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13]}{
+ printf ' Times %s:',
+ x[i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13].val;
+ printf '%s', if ArgNum1 == 1 then '' else ' ' & if i1 then i1 else 'X';
+ printf '%s', if ArgNum2 == 1 then '' else '-' & if i2 then i2 else 'X';
+ printf '%s', if ArgNum3 == 1 then '' else '-' & if i3 then i3 else 'X';
+ printf '%s', if ArgNum4 == 1 then '' else '-' & if i4 then i4 else 'X';
+ printf '%s', if ArgNum5 == 1 then '' else '-' & if i5 then i5 else 'X';
+ printf '%s', if ArgNum6 == 1 then '' else '-' & if i6 then i6 else 'X';
+ printf '%s', if ArgNum7 == 1 then '' else '-' & if i7 then i7 else 'X';
+ printf '%s', if ArgNum8 == 1 then '' else '-' & if i8 then i8 else 'X';
+ printf '%s', if ArgNum9 == 1 then '' else '-' & if i9 then i9 else 'X';
+ printf '%s', if ArgNum10 == 1 then '' else '-' & if i10 then i10 else 'X';
+ printf '%s', if ArgNum11 == 1 then '' else '-' & if i11 then i11 else 'X';
+ printf '%s', if ArgNum12 == 1 then '' else '-' & if i12 then i12 else 'X';
+ printf '%s', if ArgNum13 == 1 then '' else '-' & if i13 then i13 else 'X';
+ printf '\n';
+}
+/* pretty-print a generated football pool system (covering code) */
+
+data;
+
+param ArgNum1 := 4;
+param ArgNum2 := 2;
+param ArgNum3 := 2;
+param ArgNum4 := 2;
+param ArgNum5 := 2;
+
+end;