summaryrefslogtreecommitdiff
path: root/glpk-5.0/examples/powplant.mod
diff options
context:
space:
mode:
Diffstat (limited to 'glpk-5.0/examples/powplant.mod')
-rw-r--r--glpk-5.0/examples/powplant.mod200
1 files changed, 200 insertions, 0 deletions
diff --git a/glpk-5.0/examples/powplant.mod b/glpk-5.0/examples/powplant.mod
new file mode 100644
index 0000000..3b5d73e
--- /dev/null
+++ b/glpk-5.0/examples/powplant.mod
@@ -0,0 +1,200 @@
+/* Power plant LP scheduler */
+
+/* Implemented, inspected, written and converted to GNU MathProg
+ by NASZVADI, Peter, 199x-2017 <vuk@cs.elte.hu> */
+
+/*
+ Fast electric power plant scheduler implementation based on new
+ results in author's Thesis.
+
+ The base problem is:
+ * given some power plants
+ * a short time scale partitioned to equidistant intervals
+ * the task is to yielding the cheapest schedule for the plants
+ * the daily demand forecast is usually accurate and part of the input
+
+ The power plants has technical limitations:
+ * upper and lower bounds of produced energy
+ * and also a gradient barrier in both directions
+ (can depend on time, but this GMPL implementation is simplified)
+ * Also units with same properties (technical and price) should be
+ scheduled together usually with near same performance values
+ * Assumed a simplified network topology, which is contractive, so
+ keeping Kirchhoff's laws is a necessary constraint too
+ * All solutions must be integer
+
+ The LP relaxation is equivalent with the MIP problem due to the
+ model's matrix interesting property: it is Totally Unimodular
+ (proven in 2004 by author) and also a Network Matrix (2006,
+ presented at OTDK 2016, Szeged, Hungary) so:
+ * it is strictly polynomial if it is solved by most simplex algs
+ * all base solutions become integer if the RHS vector is integer
+ (it is in real life, so this is an acceptable assumption)
+ * The transposed matrix is NOT a Network Matrix in most cases!
+
+ However, adding several other constraints easily turns the problem
+ to be NP-hard, which is also pinpointed and discussed in the Thesis.
+
+ See more about electric power plants' scheduling in the
+ author's Thesis (in Hungarian):
+ http://www.cs.elte.hu/matdiploma/vuk.pdf
+
+ It is possible to run with custom parameters, what is needed
+ to define is:
+ * TIME set (daylightsaving cases or other than hour intervals)
+ * PLANTS set (the 'Demand' is mandatory and usually negative)
+ * PRICE parameter (can be negative if energy is sold to a consumer)
+ * BOUND parameter (technical bounds)
+ * MAXGRAD parameter (technical bounds)
+
+ Then generate a pretty-printed solution by typing:
+ glpsol --math powplant.mod [--data NEW_DATA.dat]
+
+ where "NEW_DATA.dat" should contain the above 5 structures filled
+ with custom data. Square brackets shoudn't be entered, and specifying
+ custom data file is optional.
+*/
+
+set TIME, default {
+ '00:00', '01:00', '02:00', '03:00', '04:00',
+ '05:00', '06:00', '07:00', '08:00', '09:00',
+ '10:00', '11:00', '12:00', '13:00', '14:00',
+ '15:00', '16:00', '17:00', '18:00', '19:00',
+ '20:00', '21:00', '22:00', '23:00', '24:00'
+};
+/* Time labels, assumed natural ordering. daylightsaving's bias
+ can be inserted p.ex. in Central Europe like:
+ ... '01:00', '02:00', '02:00b', '03:00', ... */
+
+set TADJ := setof{(r, s) in TIME cross TIME: r < s}(r, s) diff
+ setof{(t, u, v) in TIME cross TIME cross TIME: t < u and u < v}(t, v);
+/* Tricky adjacent time label generator because GMPL lacks order determination
+ of set elements (except intervals composed of equidistant numbers) */
+
+set PLANTS, default {'Demand'};
+/* Demand is a promoted, mandatory one, usually filled
+ with negative MW values in data section */
+
+set DIRECTION, default {'Up', 'Down'};
+/* All possible directions of gradients, do not touch */
+
+param MAXINT, default 10000;
+/* A "macro" for bounding absolute value of all used numbers
+ and used as default value */
+
+param PRICE{PLANTS}, default MAXINT;
+/* Should be specified in data section, self-explanatory.
+ can be negative if there are energy buyers */
+
+param BOUND{(p, t, d) in PLANTS cross TIME cross DIRECTION},
+ default if t = '00:00' then if d = 'Down' then BOUND[p, t, 'Up'] else 0 else
+ if p <> 'Demand' or d = 'Up' then sum{(u, v) in TADJ: v = t} BOUND[p, u, d]
+ else BOUND[p, t, 'Up'];
+/* Obvious, technical bounds of each power plant unit (real or virtual like
+ 'Demand'). If some parts are not given in data section, calculated
+ from preceeding values. Also for time '00:00', its 'Down' values by
+ default are the same as denoted with 'Up' */
+
+param MAXGRAD{(p, d) in PLANTS cross DIRECTION}, default MAXINT;
+/* Usually nonnegative integer, might differ in distinct directions per unit
+ in the cited thesis, it is allowed to gradient bounds to depend on time,
+ but this is a simplified model */
+
+var x{(t, p) in TIME cross PLANTS}, <= BOUND[p, t, 'Up'], >= BOUND[p, t, 'Down'];
+/* The schedule, dimension is MW */
+
+s.t. kirchhoff{t in TIME: t <> '00:00'}: sum{p in PLANTS} x[t, p] = 0;
+/* Conservative property */
+
+s.t. gradient{(p, t, u) in PLANTS cross TADJ}:
+ -MAXGRAD[p, 'Down'] <= x[t, p] - x[u, p] <= MAXGRAD[p, 'Up'];
+/* Technical limitations, each unit usually cannot change performance
+ arbitrarily in a short time, so limited in both directions per time unit*/
+
+minimize obj: sum{(t, p) in TIME cross PLANTS}(x[t, p] * PRICE[p]);
+/* The objective is the cost of the schedule */
+
+solve;
+
+/* Pretty print solution in table */
+
+printf '+--------+';
+for{p in PLANTS}{
+ printf '-% 6s-+', '------';
+}
+printf '\n';
+printf '|%7s |', ' ';
+for{p in PLANTS}{
+ printf ' % 6s |', p;
+}
+printf '\n';
+printf '+--------+';
+for{p in PLANTS}{
+ printf '-% 6s-+', '------';
+}
+printf '\n';
+for{t in TIME}{
+ printf '|%7s |', t;
+ for{p in PLANTS}{
+ printf ' % 6s |', x[t, p].val;
+ }
+ printf '\n';
+}
+printf '+--------+';
+for{p in PLANTS}{
+ printf '-% 6s-+', '------';
+}
+printf '\n';
+
+data;
+
+/*
+ Generated random default values and names, the demand is the sum of
+ 2 sinewaves.
+ Also specified a treshold for nuclear plants from 15:00 till 19:00
+ The sun is shining only morning and in the afternoon: 07:00-18:00, so
+ solar plant cannot produce electric energy after sunset.
+
+ Only touch this section, or export it to a data file!
+*/
+
+set PLANTS 'Demand', 'Atom1', 'Atom2', 'Coal', 'Gas1', 'Gas2', 'Green', 'Oil', 'Solar', 'Dam';
+
+param PRICE :=
+ 'Demand' 0
+ 'Atom1' 2
+ 'Atom2' 2
+ 'Coal' 15.6
+ 'Gas1' 12
+ 'Gas2' 11.5
+ 'Green' 8.8
+ 'Oil' 23.3
+ 'Solar' 7.6
+ 'Dam' 3;
+/* price per MW */
+
+param BOUND :=
+ [*, *, 'Up'] (tr): 'Atom1' 'Atom2' 'Coal' 'Gas1' 'Gas2' 'Green' 'Oil' 'Solar' 'Dam' :=
+ '00:00' 240 240 100 150 150 20 90 0 20
+ '01:00' 240 240 155 192 208 35 230 0 20
+ [*, *, 'Up'] (tr): 'Atom1' 'Atom2' :=
+ '15:00' 200 200
+ '19:00' 235 235
+ [*, *, 'Up'] (tr): 'Solar' :=
+ '07:00' 20
+ '18:00' 0
+ [*, *, 'Down'] (tr): 'Atom1' 'Atom2' 'Coal' 'Gas1' 'Gas2' 'Green' 'Oil' 'Solar' 'Dam' :=
+ '01:00' 100 100 50 62 68 0 75 0 20
+ [*, *, 'Up'] : '01:00' '02:00' '03:00' '04:00' '05:00' '06:00' '07:00' '08:00' :=
+ 'Demand' -868 -851 -837 -791 -887 -912 -1046 -1155
+ [*, *, 'Up'] : '09:00' '10:00' '11:00' '12:00' '13:00' '14:00' '15:00' '16:00' :=
+ 'Demand' -945 -873 -797 -990 -1241 -1134 -815 -782
+ [*, *, 'Up'] : '17:00' '18:00' '19:00' '20:00' '21:00' '22:00' '23:00' '24:00' :=
+ 'Demand' -772 -827 -931 -1105 -1215 -1249 -1183 -952;
+
+param MAXGRAD (tr)
+ : 'Atom1' 'Atom2' 'Coal' 'Gas1' 'Gas2' 'Green' 'Oil' 'Solar' 'Dam' :=
+ 'Up' 30 30 35 89 95 5 56 2 4
+ 'Down' 30 30 45 96 102 5 56 2 4;
+
+end;